GATE SOLVED PAPER - EC

NETWORK ANALYSIS

Consider a delta connection of resistors and its equivalent star connection as shown below. If all elements of the delta connection are scaled by a factork, $k>0$, the elements of the corresponding star equivalent will be scaled by a factor of

(A) k^{2}
(B) k
(C) $1 / k$
(D) \sqrt{k}

The transfer function $\frac{V_{2} \wedge_{s} h}{V_{1} \wedge s h}$ of the circuit shown below is

(A) $\frac{0.5 s+1}{s+1}$
(B) $\frac{3 s+6}{s+2}$
(C) $\frac{s+2}{s+1}$
(D) $\frac{s+1}{s+2}$
Q. 3 A source $v_{s}{ }^{\wedge} t \mathrm{~h}=V \cos 100 p t$ has an internal impedance of $\wedge 4+j 3 \mathrm{hW}$. If a purely resistive load connected to this source has to extract the maximum power out of the source, its value in W should be
(A) 3
(B) 4
(C) 5
(D) 7

In the circuit shown below, if the source voltage $V_{S}=100+53.13 \mathrm{c} \mathrm{V}$ then the Thevenin's equivalent voltage in Volts as seen by the load resistance R_{L} is

(A) $100+90 \mathrm{c}$
(B) $800+0 \mathrm{c}$
(C) $800+90 c$
(D) $100+60 \mathrm{c}$

The following arrangement consists of an ideal transformer and an attenuator which attenuates by a factor of 0.8 . An ac voltage $V_{W X 1}=100 \mathrm{~V}$ is applied across WX to get an open circuit voltage $V_{Y Z 1}$ across YZ. Next, an ac voltage $V_{Y Z 2}=100 \mathrm{~V}$ is applied across YZ to get an open circuit voltage $V_{W X 2}$ across WX. Then, $V_{Y Z 1} / V_{W X 1}, V_{W X 2} / V_{Y Z 2}$ are respectively,

(A) $125 / 100$ and $80 / 100$
(B) $100 / 100$ and $80 / 100$
(C) $100 / 100$ and $100 / 100$
(D) $80 / 100$ and $80 / 100$

Two magnetically uncoupled inductive coils have Q factors q_{1} and q_{2} at the chosen operating frequency. Their respective resistances are R_{1} and R_{2}. When connected in series, their effective Q factor at the same operating frequency is
(A) $q_{1}+q_{2}$
(B) ${ }^{\wedge} 1 / q_{1} \mathrm{~h}+{ }^{\wedge} 1 / q_{2} \mathrm{~h}$
(C) ${ }^{\wedge} q_{1} R_{1}+q_{2} R_{2} \mathrm{~h} / \wedge R_{1}+R_{2} \mathrm{~h}$
(D) ${ }^{\wedge} q_{1} R_{2}+q_{2} R_{1} \mathrm{~h} / \wedge R_{1}+R_{2} \mathrm{~h}$

Three capacitors C_{1}, C_{2} and C_{3} whose values are $10 \mathrm{mF}, 5 \mathrm{mF}$, and 2 mF respectively, have breakdown voltages of $10 \mathrm{~V}, 5 \mathrm{~V}$ and 2 V respectively. For the interconnection shown below, the maximum safe voltage in Volts that can be applied across the combination, and the corresponding total charge in mC stored in the effective capacitance across the terminals are respectively,

(A) 2.8 and 36
(B) 7 and 119
(C) 2.8 and 32
(D) 7 and 80

Common Data For Q. 8 and 9:

Consider the following figure

Q. 9 The current in the 1 W resistor in Amps is
Q. 8

The current I_{S} in Amps in the voltage source, and voltage V_{S} in Volts across the current source respectively, are
(A) $13,-20$
(B) $8,-10$
(C) $-8,20$
(D) $-13,20$
(A) 2
(B) 3.33
(C) 10
(D) 12

In the following figure, C_{1} and C_{2} are ideal capacitors. C_{1} has been charged to 12 V before the ideal switch S is closed at $t=0$. The current $i(t)$ for all t is

(A) zero
by a current
(B) a step function
(C) an exponentially decaying function
(D) an impulse function

The average power delivered to an impedance $(4-j 3) \mathrm{W}$ $5 \cos (100 p t+100) \mathrm{A}$ is
(A) 44.2 W
(B) 50 W
(C) 62.5 W
(D) 125 W

In the circuit shown below, the current through the inductor is

(A) $\frac{2}{1+j} \mathrm{~A}$
(B) $\frac{-1}{1+j} \mathrm{~A}$
(C) $\frac{1}{1+j} \mathrm{~A}$
(D) 0 A

Assuming both the voltage sources are in phase, the value of R for which maximum power is transferred from circuit A to circuit B is

(A) 0.8 W
(B) 1.4 W
(C) 2 W
(D) 2.8 W
Q. 14

If $V_{A}-V_{B}=6 \mathrm{~V}$ then $V_{C}-V_{D}$ is

(A) -5 V
(B) 2 V
(C) 3 V
(D) 6 V

Common Data For Q. 15 and 16 :
With 10 V dc connected at port A in the linear nonreciprocal two-port network shown below, the following were observed :
(i) 1 W connected at port B draws a current of 3 A
(ii) 2.5 W connected at port B draws a current of 2 A

Q. 16 For the same network, with 6 V dc connected at port $A, 1 \mathrm{~W}$ connected at port
Q. 15

With 10 V dc connected at port A, the current drawn by 7 W connected at port B is
(A) $3 / 7 \mathrm{~A}$
(B) $5 / 7 \mathrm{~A}$
(C) 1 A
(D) $9 / 7 \mathrm{~A}$ B draws $7 / 3 \mathrm{~A}$. If 8 V dc is connected to port A, the open circuit voltage at port B is
(A) 6 V
(B) 7 V
(C) 8 V
(D) 9 V

2011
ONE MARK
In the circuit shown below, the Norton equivalent current in amperes with respect to the terminals P and Q is

(A) $6.4-j 4.8$
(B) $6.56-j 7.87$
(C) $10+j 0$
(D) $16+j 0$

In the circuit shown below, the value of R_{L} such that the power transferred to R_{L} is maximum is

(A) 5 W
(B) 10 W
(C) 15 W
(D) 20 W

The circuit shown below is driven by a sinusoidal input $\quad v_{i}=V_{p} \cos (t / R C)$. The steady state output v_{o} is

(A) $\left(V_{p} / 3\right) \cos (t / R C)$
(B) $\left(V_{p} / 3\right) \sin (t / R C)$
(C) $\left(V_{p} / 2\right) \cos (t / R C)$
(D) $\left(V_{p} / 2\right) \sin (t / R C)$

2011

In the circuit shown below, the current I is equal to

(A) $1.4+0 \mathrm{c} \mathrm{A}$
(B) $2.0+0 \mathrm{c} \mathrm{A}$
(C) $2.8+0 \mathrm{c} \mathrm{A}$
(D) $3.2+0 \mathrm{cA}$

In the circuit shown below, the network N is described by the following Y matrix:
$Y=>_{0} \begin{array}{r}0.1 \mathrm{~S} \\ 0.01 \mathrm{~S}\end{array} \quad 0.01 \mathrm{~S}$ H. the voltage gain $\frac{V_{2}}{V}$ is

(A) $1 / 90$
(B) $-1 / 90$
(C) $-1 / 99$
(D) $-1 / 11$

In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. The current $i(t)$ at a time t after the switch is closed is

(A) $i(t)=15 \exp \left(-2 \# 10^{3} t\right) \mathrm{A}$
(B) $i(t)=5 \exp \left(-2 \# 10^{3} t\right) \mathrm{A}$
(C) $i(t)=10 \exp \left(-2 \neq 10^{3} t\right) \mathrm{A}$
(D) $i(t)=-5 \exp \left(-2 \neq 10^{3} t\right) \mathrm{A}$

For the two-port network shown below, the short-circuit admittance parameter matrix is

(A) $>\begin{array}{cc}4 & -2 \\ -2 & 4^{\mathrm{H} \mathrm{S}}\end{array}$
(B) $>\begin{array}{cc}1 & -0.5 \\ -0.5 & 1 \\end{array}
(C) $\gg_{0.5}^{1} \quad 0.5 \mathrm{H} \mathrm{S}$
(D) $>_{2}^{4} \quad{ }_{2}^{2} \mathrm{H} \mathrm{S}$

In the circuit shown, the switch S is open for a long time and is closed at $t=0$. The current $i(t)$ for $t \$ 0^{+}$is

(A) $i(t)=0.5-0.125 e^{-1000 t} \mathrm{~A}$
(B) $i(t)=1.5-0.125 e^{-1000 t} \mathrm{~A}$
(C) $i(t)=0.5-0.5 e^{-1000 t} \mathrm{~A}$
(D) $i(t)=0.375 e^{-1000 t} \mathrm{~A}$

The current I in the circuit shown is

(A) $-j 1 \mathrm{~A}$
(B) $j 1 \mathrm{~A}$
(C) 0 A
(D) 20 A
Q. 27 In the circuit shown, the power supplied by the voltage source is

(A) 0 W
(B) 5 W
(C) 10 W
(D) 100 W

In the interconnection of ideal sources shown in the figure, it is known that the 60 V source is absorbing power.

Which of the following can be the value of the current source I ?
(A) 10 A
(B) 13 A
(C) 15 A
(D) 18 A

If the transfer function of the following network is

The value of the load resistance R_{L} is
(A) $\frac{R}{4}$
(B) $\frac{R}{2}$
(C) R
(D) $2 R$

A fully charged mobile phone with a 12 V battery is good for a 10 minute talktime. Assume that, during the talk-time the battery delivers a constant current of 2 A and its voltage drops linearly from 12 V to 10 V as shown in the figure. How much energy does the battery deliver during this talk-time?

(A) 220 J
(B) 12 kJ
(C) 13.2 kJ
(D) 14.4 J

An AC source of RMS voltage 20 V with internal impedance $Z_{s}=(1+2 j) \mathrm{W}$ feeds a load of impedance $Z_{L}=(7+4 j) \mathrm{W}$ in the figure below. The reactive power consumed by the load is

(A) 8 VAR
(B) 16 VAR
(C) 28 VAR
(D) 32 VAR
Q. 32 The switch in the circuit shown was on position a for a long time, and is move to position b at time $t=0$. The current $i(t)$ for $t>0$ is given by

(A) $0.2 e^{-125 t} u(t) \mathrm{mA}$
(B) $20 e^{-1250 t} u(t) \mathrm{mA}$
(C) $0.2 e^{-1250 t} u(t) \mathrm{mA}$
(D) $20 e^{-1000 t} u(t) \mathrm{mA}$

In the circuit shown, what value of R_{L} maximizes the power delivered to R_{L} ?

(A) 2.4 W
(B) $\frac{8}{3} \mathrm{~W}$
(C) 4 W
(D) 6 W
Q. 34

The time domain behavior of an $R L$ circuit is represented by

$$
L \frac{d i}{d t}+R i=V_{0}\left(1+B e^{-R t / L} \sin t\right) u(t)
$$

For an initial current of $i(0)=\frac{V_{0}}{R}$, the steady state value of the current is given
by
(A) $i(t) " \frac{V_{0}}{R}$
(B) $i(t) " \frac{2 V_{0}}{R}$
(C) $i(t){ }^{\prime \prime} \frac{V_{0}}{R}(1+B)$
(D) $i(t)=\frac{2 V_{0}}{R}(1+B)$

GATE 2008
ONE MARK
In the following graph, the number of trees (P) and the number of cut-set (Q) are

(A) $P=2, Q=2$
(B) $P=2, Q=6$
(C) $P=4, Q=6$
(D) $P=4, Q=10$

In the following circuit, the switch S is closed at $t=0$. The rate of change of current $\frac{d i}{d t}\left(0^{+}\right)$is given by

(A) 0
(B) $\frac{R_{s} I_{s}}{L}$
(C) $\frac{\left(R+R_{s}\right) I_{s}}{L}$
(D) 3

GATE 2008
The Thevenin equivalent impedance $Z_{t h}$ between the nodes P and Q in the following circuit is

(A) 1
(B) $1+s+\frac{1}{s}$
(C) $2+s+\frac{1}{s}$
(D) $\frac{s^{2}+s+1}{s^{2}+2 s+1}$

The driving point impedance of the following network is given by

$$
Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}
$$

The component values are
(A) $L=5 \mathrm{H}, R=0.5 \mathrm{~W}, C=0.1 \mathrm{~F}$
(B) $L=0.1 \mathrm{H}, R=0.5 \mathrm{~W}, C=5 \mathrm{~F}$
(C) $L=5 \mathrm{H}, R=2 \mathrm{~W}, C=0.1 \mathrm{~F}$
(D) $L=0.1 \mathrm{H}, R=2 \mathrm{~W}, C=5 \mathrm{~F}$

The circuit shown in the figure is used to charge the capacitor C alternately from two current sources as indicated. The switches S_{1} and S_{2} are mechanically coupled and connected as follows:
For $2 n T \# t$ \# $(2 n+1) T,(n=0,1,2, ..) S_{1}$ to P_{1} and S_{2} to P_{2}
For $(2 n+1) T \# t \#(2 n+2) T,(n=0,1,2, \ldots) S_{1}$ to Q_{1} and S_{2} to Q_{2}

Assume that the capacitor has zero initial charge. Given that $u(t)$ is a unit step function, the voltage $v_{c}(t)$ across the capacitor is given by
(A) $\prod_{n=1}^{3}(-1)^{n} t u(t-n T)$
(B) $u(t)+2 \prod_{n=1}^{3}(-1)^{n} u(t-n T)$
(C) $t u(t)+2 \prod_{n=1}^{3}(-1)^{n} u(t-n T)(t-n T)$
(D) $\prod_{n=1}^{3} 60.5-e^{-(t-2 n T)}+0.5 e^{-(t-2 n T)}-T @$

Common Data For Q. 40 and 41 :

The following series $R L C$ circuit with zero conditions is excited by a unit impulse functions $\mathrm{d}(t)$.

Statement for linked Answers Questions 42 and 43:

A two-port network shown below is excited by external DC source. The voltage and the current are measured with voltmeters V_{1}, V_{2} and ammeters. assumed to be ideal), as indicated

Under following conditions, the readings obtained are:
(1) S_{1}-open, S_{2} - closed $A_{1}=0, V_{1}=4.5 \mathrm{~V}, V_{2}=1.5 \mathrm{~V}, A_{2}=1 \mathrm{~A}$
(2) S_{1}-open, S_{2} - closed $A_{1}=4 \mathrm{~A}, V_{1}=6 \mathrm{~V}, V_{2}=6 \mathrm{~V}, A_{2}=0$

An independent voltage source in series with an impedance $Z_{s}=R_{s}+j X_{s}$ delivers a maximum average power to a load impedance Z_{L} when
(A) $Z_{L}=R_{s}+j X_{s}$
(B) $Z_{L}=R_{s}$
(C) $Z_{L}=j X_{s}$
(D) $Z_{L}=R_{s}-j X_{s}$

The $R C$ circuit shown in the figure is

(A) a low-pass filter
(B) a high-pass filter
(C) a band-pass filter
(D) a band-reject filter

GATE 2007
TWO MARKS
Q. 46

Two series resonant filters are as shown in the figure. Let the 3-dB bandwidth of Filter 1 be B_{1} and that of Filter 2 be B_{2}. the value $\frac{B_{1}}{1}$ is

(A) 4
(C) $1 / 2$

(B) 1
(D) $1 / 4$

For the circuit shown in the figure, the Thevenin voltage and resistance looking into $X-Y$ are

(A) $\stackrel{4}{3} \mathrm{~V}, 2 \mathrm{~W}$
(B) $4 \mathrm{~V},{ }^{2} \mathrm{~W}$
(C) $\stackrel{3}{4} \mathrm{~V}, \stackrel{2}{-2} \mathrm{~W}$
(D) $4 \mathrm{~V}, 2 \mathrm{~W}$

In the circuit shown, v_{C} is 0 volts at $t=0$ sec. For $t>0$, the capacitor current $i_{C}(t)$, where t is in seconds is given by

(A) $0.50 \exp (-25 t) \mathrm{mA}$
(B) $0.25 \exp (-25 t) \mathrm{mA}$
(C) $0.50 \exp (-12.5 t) \mathrm{mA}$
(D) $0.25 \exp (-6.25 t) \mathrm{mA}$
Q. 49

In the ac network shown in the figure, the phasor voltage V_{AB} (in Volts) is

(B) $5+30 \mathrm{c}$
(C) $12.5+30 \mathrm{c}$
(D) $17+30 \mathrm{c}$
(A) 0

A two-port network is represented by $A B C D$ parameters given by

$$
{ }^{V_{1}}{ }_{I_{1}} \mathrm{G}=\begin{array}{cc}
A & B \\
= & D^{\mathrm{G}}
\end{array} D^{\mathrm{G}}{ }_{-I_{2}}^{V_{2}} \mathrm{G}
$$

If port-2 is terminated by R_{L}, the input impedance seen at port-1 is given by
(A) $\frac{A+B R_{L_{-}}}{C+D R_{L}}$
(B) $\frac{A R_{L}+C}{B R_{L}+D}$
(C) $\frac{D R_{L}+A}{B R_{L}+C}$
(D) $\frac{B+A R_{L}}{D+C R_{L}}$

In the two port network shown in the figure below, Z_{12} and Z_{21} and respectively

(A) r_{e} and $\mathrm{b} r_{0}$
(B) 0 and $-\mathrm{br} r_{0}$
(C) 0 and $\mathrm{b} r_{o}$
(D) r_{e} and $-\mathrm{b} r_{0}$

The first and the last critical frequencies (singularities) of a driving point impedance function of a passive network having two kinds of elements, are a pole and a zero respectively. The above property will be satisfied by
(A) $R L$ network only
(B) $R C$ network only
(C) LC network only
(D) $R C$ as well as $R L$ networks

A 2 mH inductor with some initial current can be represented as shown below, where s is the Laplace Transform variable. The value of initial current is

(A) 0.5 A
(B) 2.0 A
(C) 1.0 A
(D) 0.0 A
Q. 54

In the figure shown below, assume that all the capacitors are initially uncharged. If $v_{i}(t)=10 u(t)$ Volts, $v_{o}(t)$ is given by

(A) $8 e^{-t / 0.004}$ Volts
(B) $8\left(1-e^{-t / 0.004}\right)$ Volts
(C) $8 u(t)$ Volts
(D) 8 Volts

The condition on R, L and C such that the step response $y(t)$ in the figure has no oscillations, is

(A) $R \$ \frac{1}{2} \sqrt{\frac{L}{C}}$
(B) $R \$ \quad \frac{L}{C}$
(C) $R \$ 2 \quad \frac{L}{C}$
(D) $R=\frac{1}{\sqrt{L C}}$

The $A B C D$ parameters of an ideal n : 1 transformer showṇ in the figure are

The value of x will be
(A) n
(B) 1
(C) n^{2}
(D) $\frac{1}{n^{2}}$

In a series $R L C$ circuit, frequency is
(A) $2 \# 10^{4} \mathrm{~Hz}$
(B) $\frac{1}{\mathrm{p}} \# 10^{4} \mathrm{~Hz}$
(C) $10^{4} \mathrm{~Hz}$
(D) $2 \mathrm{p} \# 10^{4} \mathrm{~Hz}$
(A) 1 W
(B) 10 W
(C) 0.25 W
(D) 0.5 W

For the circuit shown in the figure, the instantaneous current $i_{1}(t)$ is

(A) $\frac{1 Q 3}{2} / 90 \mathrm{c} A$
(B) $\frac{103}{2} \angle-90 \mathrm{cA}$
(C) 5 60c A
(D) 5 -60c A

Impedance Z as shown in the given figure is

(A) $j 29 \mathrm{~W}$
(B) $j 9 \mathrm{~W}$
(C) $j 19 \mathrm{~W}$
(D) $j 39 \mathrm{~W}$

The h parameters of the circuit shown in the figure are

$$
10-1
$$

$(A)=\frac{0}{30} \cdot \frac{1020}{0.3^{G}}$
(B) $={ }_{1}{ }_{10} 0.05_{1}^{\mathrm{G}}$
$(C)=2020^{G}$
$(D)=-1 \quad 0.05{ }^{G}$

For the circuit shown in the figure, Thevenin's voltage and Thevenin's equivalent resistance at terminals $a-b$ is

(A) 5 V and 2 W
(B) 7.5 V and 2.5 W
(C) 4 V and 2 W
(D) 3 V and 2.5 W

If $R_{1}=R_{2}=R_{4}=R$ and $R_{3}=1.1 R$ in the bridge circuit shown in the figure, then the reading in the ideal voltmeter connected between a and b is

(A) 0.238 V
(B) 0.138 V
(C) -0.238 V
(D) 1 V

A square pulse of 3 volts amplitude is applied to $C-R$ circuit shown in the figure. The capacitor is initially uncharged. The output voltage V_{2} at time $t=2 \mathrm{sec}$ is

(A) 3 V
(B) -3 V
(C) 4 V
(D) -4 V

Consider the network graph shown in the figure. Which one of the following is NOT a 'tree' of this graph ?

(A) a
(B) b
(C) c
(D) d

The equivalent inductance measured between the terminals 1 and 2 for the circuit shown in the figure is

(A) $L_{1}+L_{2}+M$
(B) $L_{1}+L_{2}-M$
(C) $L_{1}+L_{2}+2 M$
(D) $L_{1}+L_{2}-2 M$

The circuit shown in the figure, with $R=\underset{3}{1} \mathrm{~W}, L={\underset{1}{4}}_{4}$ has input voltage $v(t)=\sin 2 t$. The resulting current $i(t)$ is

(A) $5 \sin (2 t+53.1 \mathrm{C})$
(B) $5 \sin (2 t-53.1 \mathrm{c})$
(C) $25 \sin (2 t+53.1 \mathrm{C})$
(D) $25 \sin (2 t-53.1 \mathrm{C})$
Q. 70 For the circuit shown in the figure, the time constant $R C=1 \mathrm{~ms}$. The input voltage is $v_{i}(t)=\sqrt{2} \sin 10^{3} t$. The output voltage $v_{o}(t)$ is equal to

(A) $\sin \left(10^{3} t-45 \mathrm{c}\right)$
(B) $\sin \left(10^{3} t+45 \mathrm{c}\right)$
(C) $\sin \left(10^{3} t-53 \mathrm{c}\right)$
(D) $\sin \left(10^{3} t+53 \mathrm{c}\right)$
Q. $71 \quad$ For the $R-L$ circuit shown in the figure, the input voltage $v_{i}(t)=u(t)$. The current $i(t)$ is

(A)

(B)

(C)

(D)

For the lattice shown in the figure, $Z_{a}=j 2 \mathrm{~W}$ and $Z_{b}=2 \mathrm{~W}$. The values of the open circuit impedance parameters $\quad 6 z @=={ }_{z_{21}} \quad z_{22}$ (are

$$
1-j \quad 1+j
$$

$(\mathrm{A})=1+j 1+j_{j}^{G}$
$(\mathrm{B})=-1+{ }_{j}{ }^{j} \quad 1-1,{ }_{4}^{\mathrm{G}}$
(C) $={ }_{1-j} 1-j^{G}$
$(\mathrm{D})=-1+j \quad 1+j \mathrm{G}$
Q. 73

The circuit shown in the figure has initial current $i_{L}\left(0^{-}\right)=1$ A through the inductor and an initial voltage $v_{C}\left(0^{-}\right)=-1 \mathrm{~V}$ across the capacitor. For input $v(t)=u(t)$, the Laplace transform of the current $i(t)$ for $t \$ 0$ is

(A) $\frac{s}{s^{2}+s+1}$
(B) $\frac{s+2}{s^{2}+s+1}$
(C) $\frac{s-2}{s^{2}+s+1}$
(D) $\frac{1}{s^{2}+s+1}$

The transfer function $H(s)=\frac{V_{o}(s)}{V_{i}(s)}$ of an $R L C$ circuit is given by

$$
H(s)=\frac{10^{6}}{s^{2}+20 s+10^{6}}
$$

The Quality factor (Q-factor) of this circuit is
(A) 25
(B) 50
(C) 100
(D) 5000

For the circuit shown in the figure, the initial conditions are zero. Its transfer function $H(s)=\frac{V_{c}(s)}{V_{i}(s)}$ is

(A) $\frac{1}{s^{2}+10^{6} s+10^{6}}$
(B) $\frac{10^{6}}{s^{2}+10^{3} s+10^{6}}$
(C) $\frac{10^{3}}{s^{2}+10^{3} s+10^{6}}$
(D) $\frac{10^{6}}{s^{2}+10^{6} s+10^{6}}$

Consider the following statements S1 and S2
S 1 : At the resonant frequency the impedance of a series $R L C$ circuit is zero.
S2: In a parallel $G L C$ circuit, increasing the conductance G results in increase in its Q factor.
Which one of the following is correct?
(A) S 1 is FALSE and S 2 is TRUE
(B) Both S1 and S2 are TRUE
(C) S 1 is TRUE and S 2 is FALSE
(D) Both S1 and S2 are FALSE
Q. 77

The minimum number of equations required to analyze the circuit shown in the figure is

(A) 3
(B) 4
(C) 6
(D) 7

A source of angular frequency $1 \mathrm{rad} / \mathrm{sec}$ has a source impedance consisting of 1 W resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is
(A) 1 W resistance
(B) 1 W resistance in parallel with 1 H inductance
(C) 1 W resistance in series with 1 F capacitor
(D) 1 W resistance in parallel with 1 F capacitor

A series $R L C$ circuit has a resonance frequency of 1 kHz and a quality factor $Q=100$. If each of R, L and C is doubled from its original value, the new Q of the circuit is
(A) 25
(B) 50
(C) 100
(D) 200

The differential equation for the current $i(t)$ in the circuit of the figure is

(A) $2 \underline{d^{2} i}+2 \underline{d i}+i(t)=\sin t$
(B) $\underline{d^{2} i}+2 \underline{d i}+2 i(t)=\cos t$
(C) $2 \frac{\stackrel{d^{2}}{d} i}{d t^{2}}+2 \frac{d t}{d t}+i(t)=\cos t$
(D) $\frac{d t^{2}}{d t^{2}}+2 \frac{d t}{d t}+2 i(t)=\sin t$

GATE 2003
Twelve 1 W resistance are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is
(A) $\frac{5}{6} \mathrm{~W}$
(B) 1 W
(C) $\frac{6}{5} \mathrm{~W}$
(D) $\frac{3}{2} \mathrm{~W}$

The current flowing through the resistance R in the circuit in the figure has the form $P \cos 4 t$ where P is

(A) $(0.18+j 0.72)$
(B) $(0.46+j 1.90)$
(C) $-(0.18+j 1.90)$
(D) $-(0.192+j 0.144)$

Common Data For Q. 83 and 84 :

Assume that the switch S is in position 1 for a long time and thrown to position 2 at $t=0$.

Q. 83

At $t=0^{+}$, the current i_{1} is
(A) $\frac{-V}{2 R}$
(B) $\frac{-V}{R}$
(C) $\frac{-V}{4 R}$
(D) zero
$I_{1}(s)$ and $\quad I_{2}(s)$ are the Laplace transforms of $\quad i_{1}(t)$ and $\quad i_{2}(t)$ respectively. The equations for the loop currents $I_{1}(s)$ and $I_{2}(s)$ for the circuit shown in the figure, after the switch is brought from position 1 to position 2 at $t=0$, are
$(\mathrm{A})>\begin{array}{ccc}R+L s+\frac{1}{C s} & -L s & I_{1}(s) \\ -L s & R+{ }_{C s}^{+\mid} & I_{2}(s)^{\mathrm{G}}={ }_{0}={ }_{0}^{\frac{V}{s}} G \mathrm{G}\end{array}$
(B) $>^{R+L s+\frac{1}{C s}} \begin{array}{ccc}-L s & -L s & I_{1}(s) \\ R+{ }_{C s} & I_{2}(s)\end{array} \mathrm{G}==\begin{gathered}-\frac{\downarrow}{2} \mathrm{G}\end{gathered}$

(D) $>\begin{array}{cc}R+L s+\frac{1}{C s} & -C s \\ -L s & R+L s+{ }_{C s} \\ H_{F} & I_{1}(s)\end{array} \mathrm{I}(s)={ }_{0}^{\frac{V}{s}} \mathrm{G}$

The driving point impedance $Z(s)$ of a network has the pole-zero locations as shown in the figure. If $Z(0)=3$, then $Z(s)$ is

(A) $\frac{3(s+3)}{s^{2}+2 s+3}$
(B) $\frac{2(s+3)}{s^{2}+2 s+2}$
(C) $\frac{3(s+3)}{s^{2}+2 s+2}$
(D) $\frac{2(s-3)}{s^{2}-2 s-3}$
Q. 87 The impedance parameters z_{11} and z_{12} of the two-port network in the figure are
Q. 86

An input voltage $\quad v(t)=10 \quad 2 \cos (t+10 \mathrm{c})+10 \quad 5 \cos (2 t+10 \mathrm{c}) \mathrm{V}$ is applied to a series combination of resistance $R=1 \mathrm{~W}$ and an inductance $L=1 \quad \mathrm{H}$. The resulting steady-state current $i(t)$ in ampere is
(A) $10 \cos (t+55 \mathrm{c})+10 \cos \left(2 t+10 \mathrm{c}+\tan ^{-1} 2\right)$
(B) $10 \cos (t+55 \mathrm{c})+10, \frac{3}{2} \cos (2 t+55 \mathrm{c})$
(C) $10 \cos (t-35 \mathrm{c})+10 \cos \left(2 t+10 \mathrm{c}-\tan ^{-1} 2\right)$
(D) $10 \cos (t-35 \mathrm{c})+\cdot / \frac{3}{2} \cos (2 t-35 \mathrm{c})$

(A) $z_{11}=2.75 \mathrm{~W}$ and $z_{12}=0.25$
(B) $z_{11}=3 \mathrm{~W}$ and $z_{12}=0.5 \mathrm{~W}$
W
(D) $z_{11}=2.25 \mathrm{~W}$ and $z_{12}=0.5 \mathrm{~W}$
(C) $z_{11}=3 \mathrm{~W}$ and $z_{12}=0.25 \mathrm{~W}$

GATE 2002

The dependent current source shown in the figure

(A) delivers 80 W
(B) absorbs 80 W
(C) delivers 40 W
(D) absorbs 40 W

In the figure, the switch was closed for a long time before opening at $t=0$. The voltage v_{x} at $t=0^{+}$is

(A) 25 V
(B) 50 V
(C) -50 V
(D) 0 V

In the network of the fig, the maximum power is delivered to R_{L} if its value is

(A) 16 W
(B) $\frac{40}{3} \mathrm{~W}$
(C) 60 W
(D) 20 W

If the 3-phase balanced source in the figure delivers 1500 W at a leading power factor 0.844 then the value of Z_{L} (in ohm) is approximately

(A) $90+32.44 \mathrm{C}$
(B) $80+32.44 \mathrm{C}$
(C) $80+-32.44 \mathrm{c}$
(D) $90+-32.44 \mathrm{C}$

The Voltage e_{0} in the figure is

(A) 2 V
(B) $4 / 3 \mathrm{~V}$
(C) 4 V
(D) 8 V

If each branch of Delta circuit has impedance
$\overline{3} Z$, then each branch of the equivalent Wye circuit has impedance
(A) $\frac{Z}{3}$
(B) $3 Z$
(C) $33 \bar{Z}$
(D) $\frac{Z}{3}$

The admittance parameter Y_{12} in the 2-port network in Figure is

(A) -0.02 mho
(B) 0.1 mho
(C) -0.05 mho
(D) 0.05 mho
Q. 95 The voltage e_{0} in the figure is

(A) 48 V
(B) 24 V
(C) 36 V
(D) 28 V

When the angular frequency W in the figure is varied 0 to 3 , the locus of the current phasor I_{2} is given by

(A)

(B)

(C)

(D)

Q. 97

In the figure, the value of the load resistor R_{L} which maximizes the power delivered to it is

(A) 14.14 W
(B) 10 W
(C) 200 W
(D) 28.28 W
Q. 98

In the circuit of the figure, the voltage $v(t)$ is

(A) $e^{a t}-e^{b t}$
(B) $e^{a t}+e^{b t}$
(C) $a e^{a t}-b e^{b t}$
(D) $a e^{a t}+b e^{b t}$
Q. 101 In the circuit of the figure, the value of the voltage source E is

(A) -16 V
(B) 4 V
(C) -6 V
(D) 16 V
Q. 102
Q. 103
Q. 105

Use the data of the figure (a). The current i in the circuit of the figure (b)

(a)

(b)
(A) -2 A
(B) 2 A
(C) -4 A
(D) 4 A

GATE 1999
ONE MARK
Identify which of the following is NOT a tree of the graph shown in the given figure is

(A) begh
(B) defg
(C) $a b f g$
(D) $a e g h$

A 2-port network is shown in the given figure. The parameter h_{21} for this network can be given by

(A) $-1 / 2$
(B) $+1 / 2$
(C) $-3 / 2$
(D) $+3 / 2$

GATE 1999
The Thevenin equivalent voltage $V_{T H}$ appearing between the terminals A and B of the network shown in the given figure is given by

(A) $j 16(3-j 4)$
(B) $j 16(3+j 4)$
(C) $16(3+j 4)$
(D) $16(3-j 4)$
Q. 106

The value of R (in ohms) required for maximum power transfer in the network shown in the given figure is

(A) 2
(B) 4
(C) 8
(D) 16
Q. 107 A Delta-connected network with its Wye-equivalent is shown in the given figure. The resistance R_{1}, R_{2} and R_{3} (in ohms) are respectively

(A) $1.5,3$ and 9
(B) 3, 9 and 1.5
(C) 9,3 and 1.5
(D) 3, 1.5 and 9
Q. 108 A network has 7 nodes and 5 independent loops. The number of branches in the network is
(A) 13
(B) 12
(C) 11
(D) 10

The nodal method of circuit analysis is based on
(A) KVL and Ohm's law
(B) KCL and Ohm's law
(C) KCL and KVL
(D) KCL, KVL and Ohm's law

Superposition theorem is NOT applicable to networks containing
(A) nonlinear elements
(B) dependent voltage sources
(C) dependent current sources
(D) transformers

The parallel RLC circuit shown in the figure is in resonance. In this circuit

(A) $\left|I_{R}\right|<1 \mathrm{~mA}$
(B) $\left|I_{R}+I_{L}\right|>1 \mathrm{~mA}$
(C) $\left|I_{R}+I_{C}\right|<1 \mathrm{~mA}$
(D) $\left|I_{R}+I_{C}\right|>1 \mathrm{~mA}$
The short-circuit admittance matrix a two-port network is $>_{1 / 2} \quad 0 \quad \mathrm{H}$ The two-port network is
(A) non-reciprocal and passive
(B) non-reciprocal and active
(C) reciprocal and passive
(D) reciprocal and active
Q. 112

The voltage across the terminals a and b in the figure is

(A) 0.5 V
(B) 3.0 V
(C) 3.5 V
(D) 4.0 V

The current i_{4} in the circuit of the figure is equal to

(A) 12 A
(B) -12 A
(C) 4 A
(D) None or these

The voltage V in the figure equal to

(A) 3 V
(B) -3 V
(C) 5 V
(D) None of these
Q. 117 The voltage V in the figure is always equal to

(A) 9 V
(B) 5 V
(C) 1 V
(D) None of the above
Q. 118

The voltage V in the figure is

(A) 10 V
(B) 15 V
(C) 5 V
(D) None of the above

In the circuit of the figure is the energy absorbed by the 4 W resistor in the time interval $(0,3)$ is

(A) 36 Joules
(B) 16 Joules
(C) 256 Joules
(D) None of the above

In the circuit of the figure the equivalent impedance seen across terminals a, b, is

(A) $b \frac{16}{3} \mathrm{IW}$
(B) $\mathrm{b} \frac{8}{3} \mathrm{IW}$
(C) $\mathrm{b} \frac{8}{3}+12 j \mathrm{IW}$
(D) None of the above
Q. 121 In the given figure, A_{1}, A_{2} and A_{3} are ideal ammeters. If A_{2} and A_{3} read 3 A and 4 A respectively, then A_{1} should read

(A) 1 A
(B) 5 A
(C) 7 A
(D) None of these
Q. 122 The number of independent loops for a network with n nodes and b branches is
(A) $n-1$
(B) $b-n$
(C) $b-n+1$
(D) independent of the number of nodes

GATE 1996

The voltages $V_{C 1}, V_{C 2}$, and $V_{C 3}$ across the capacitors in the circuit in the given figure, under steady state, are respectively.

(A) $80 \mathrm{~V}, 32 \mathrm{~V}, 48 \mathrm{~V}$
(B) $80 \mathrm{~V}, 48 \mathrm{~V}, 32 \mathrm{~V}$
(C) $20 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}$
(D) $20 \mathrm{~V}, 12 \mathrm{~V}, 8 \mathrm{~V}$

SOLUTIONS

Sol. $1 \quad$ Option (B) is correct.
In the equivalent star connection, the resistance can be given as

$$
\begin{aligned}
R_{C} & =\frac{R_{b} R_{a}}{R_{a}+R_{b}+R_{c}} \\
R_{B} & =\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} \\
R_{A} & =\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}
\end{aligned}
$$

So, if the delta connection components R_{a}, R_{b} and R_{c} are scaled by a factor k then

$$
R \rrbracket=\frac{\wedge k R_{b} \mathrm{~h}^{\wedge} k R_{c} \mathrm{~h}}{k R_{a}+k R_{b}+k R_{c}}=k^{2} \frac{R_{b} R_{c}}{k} \frac{k R_{A}}{R_{a}+R_{b}+R_{c}}
$$

Hence, it is also scaled by a factor k

Option (D) is correct.
For the given capacitance, $C=100 \mathrm{mF}$ in the circuit, we have the reactance.

$$
X_{C}=\frac{1}{s c}=\frac{1}{s \# 100 \# 10^{-6}}=\frac{10^{4}}{s}
$$

So,

$$
\frac{V^{\wedge} s \mathrm{~h}}{2} V_{1} \wedge s \mathrm{~h}=\frac{\frac{10^{4}}{s}+10^{4}}{\frac{10^{4}}{s}+10^{4}+\frac{10^{4}}{s}}=\frac{s+1}{s+2}
$$

Option (C) is correct.
For the purely resistive load, maximum average power is transferred when

$$
R_{L}=\vee R^{2}+X^{2}
$$

$$
R_{L}=\vee R_{T h}+X_{T h}
$$

where $R_{T h}+j X_{T h}$ is the equivalent thevenin (input) impedance of the circuit.
Hence, we obtain

$$
R_{L}=, 4^{2}+3^{2} 5 \mathrm{~W}
$$

Option (C) is correct.
For evaluating the equivalent thevenin voltage seen by the load R_{L}, we open the circuit across it (also if it consist dependent source).
The equivalent circuit is shown below

As the circuit open across R_{L} so

$$
\begin{aligned}
I_{2} & =0 \\
\text { or, } \quad j 40 I_{2} & =0
\end{aligned}
$$

i.e., the dependent source in loop 1 is short circuited. Therefore,

$$
\begin{aligned}
& V_{L 1} \wedge \frac{\wedge}{\bar{j} \frac{j}{\bar{j}}}+3 \\
& V_{T h}=10 V_{L 1}=\frac{j 40}{j 4+3} 100 \quad \angle 53.13 \mathrm{C}=\frac{4090 \mathrm{C}}{553.13 \mathrm{C}} 100 \quad \angle 53.13 \mathrm{C} \\
& =80090 \mathrm{c}
\end{aligned}
$$

Option (C) is correct.
For the given transformer, we have

$$
\frac{V}{V_{W X}}=\frac{1.25}{1}
$$

Since,

$$
\frac{V_{Y Z}}{V}=0.8 \text { (attenuation factor) }
$$

So,

$$
\frac{V_{Y Z}}{V_{W X}}=\wedge 0.8 \mathrm{~h}^{\wedge} 1.25 \mathrm{~h}=1
$$

or, $\quad V_{Y Z}=V_{W X}$
at

$$
\begin{aligned}
& V_{W X_{1}}=100 \mathrm{~V} ; V_{Y Z_{1}}=\frac{100}{100} \\
& V_{W Z_{2}}=100 \mathrm{~V} ; \underset{\frac{V_{W X_{2}}}{V_{Y X_{2}}}}{V_{V X_{1}}}=\frac{100}{100}
\end{aligned}
$$

at

Option (C) is correct.
The quality factor of the inductances are given by
and

$$
\begin{aligned}
& q_{1}=\frac{w L_{1}}{R_{1}} \\
& q_{2}=\frac{w L_{2}}{R_{2}}
\end{aligned}
$$

So, in series circuit, the effective quality factor is given by

$$
\begin{aligned}
& Q=\frac{X_{L e q}}{R_{e q}}=\frac{w L_{1}+w L_{2}}{R_{1}+R_{2}} \\
& =\frac{R_{1} \frac{w L_{1}}{R_{2}}+\frac{w L_{2}}{R_{1} R_{2}}}{\frac{1}{R_{2}}+\frac{1}{R_{1}}}=\frac{q_{1}}{R_{2}}+\frac{q_{2}}{R_{2}} \\
& \frac{1}{R_{2}}+\frac{q_{1}}{R_{1}} R_{1}+q R \\
& R_{1}+R_{2}
\end{aligned}
$$

Option (C) is correct.

Consider that the voltage across the three capacitors C_{1}, C_{2} and C_{3} are V_{1}, V_{2} and V_{3} respectively. So, we can write

$$
\begin{equation*}
\frac{V_{2}}{V_{3}}=\frac{C_{3}}{C_{2}} \tag{1}
\end{equation*}
$$

Since, Voltage is inversely proportional to capacitance

Now, given that $C_{1}=10 \mathrm{mF} ;{ }^{\wedge} V_{1} \mathrm{~h}_{\max }=10 \mathrm{~V}$

$$
\begin{aligned}
& C_{2}=5 \mathrm{mF} ;{ }^{\wedge} V_{2} \mathrm{~h}_{\max }=5 \mathrm{~V} \\
& C_{3}=2 \mathrm{mF} ;{ }^{\wedge} V_{3} \mathrm{~h}_{\max }=2 \mathrm{~V}
\end{aligned}
$$

So, from Eq (1) we have

$$
V_{2}=\frac{2}{5}
$$

for

$$
{ }^{\wedge} V_{3} \mathrm{~h}_{\max }=2
$$

We obtain,

$$
V_{2}=\frac{2 \# 2}{5}=0.8 \text { volt }<5
$$

i.e.,

$$
V_{2}<N h_{\max }
$$

Hence, this is the voltage at C_{2}. Therefore,

$$
\begin{aligned}
& V_{3}=2 \text { volt } \\
& V_{2}=0.8 \text { volt } \\
& V_{1}=V_{2}+V_{3}=2.8 \text { volt }
\end{aligned}
$$

Now, equivalent capacitance across the terminal is

$$
C_{e q}=\frac{\mathcal{C}_{2} C_{3}+C_{1}=\frac{5 \nexists 2}{C_{2}+C_{3}}+10=\frac{80}{5+2} \mathrm{mF}}{7}
$$

Equivalent voltage is (max. value)

$$
V_{\max }=V_{1}=2.8
$$

So, charge stored in the effective capacitance is

$$
Q=C_{e q} V_{\max }=\mathrm{b} \frac{80}{7} \mathrm{I} \#^{\wedge} 2.8 \mathrm{~h}=32 \mathrm{mC}
$$

Option (D) is correct.

At the node 1, voltage is given as

$$
V_{1}=10 \text { volt }
$$

Applying KCL at node 1

$$
\begin{aligned}
& I_{S}+\frac{V_{1}}{2}+\frac{V_{1}}{1}-2=0 \\
& I_{S}+\frac{10}{2}+\frac{10}{1}-2=0 \\
& I_{S}=-13 \mathrm{~A}
\end{aligned}
$$

Also, from the circuit,

$$
V_{S}-5 \# 2=V_{1} \quad \& \quad V_{S}=10+V_{1}=20 \text { volt }
$$

Option (C) is correct.
Again from the shown circuit, the current in 1 W resistor is

$$
I=\frac{V_{1}}{1}=\frac{10}{1}=10 \mathrm{~A}
$$

Option (D) is correct.
The s-domain equivalent circuit is shown as below.

$$
\begin{aligned}
& I(s)=\frac{v_{c}(0) / s}{\frac{1}{C_{1} s}+\frac{1}{C_{2}} s}=\frac{v_{c}(0)}{\frac{1}{C_{1}}+\frac{1}{C_{2}}} \\
& \left.I(s)=\frac{C_{1} C_{2}}{\sum_{1}+C_{2}} \right\rvert\,(12 \mathrm{~V})=12 C_{e q}
\end{aligned}
$$

$$
v_{C}(0)=12 \mathrm{~V}
$$

Taking inverse Laplace transform for the current in time domain,

$$
i(t)=12 C_{e q} d(t)
$$

Option (B) is correct.
In phasor form, $\quad Z=4-j 3=5-36.86 \mathrm{cW}$

$$
I=5 \angle 100 \mathrm{c} A
$$

Average power delivered.

$$
P_{\text {avg. }}=\frac{1}{2}|\boldsymbol{I}|^{2} Z \cos q=\frac{1}{2} \# 25 \# 5 \cos 36.86 \mathrm{c}=50 \mathrm{~W}
$$

Alternate Method:

$$
\begin{gathered}
Z=(4-j 3) \mathrm{W}, \quad I=5 \cos (100 p t+100) \mathrm{A} \\
P_{\text {avg }}=\left.\frac{1}{2} \operatorname{Re} \$ I\right|^{2} Z .=\frac{1}{2} \nRightarrow \operatorname{Re}^{\prime \prime}(5)^{2} \#(4-j 3), \overline{\overline{2}} \frac{1}{\# 100}=50 \mathrm{~W}
\end{gathered}
$$

Option (C) is correct

Applying nodal analysis at top node.

Current

$$
\begin{aligned}
& \underline{V}_{1} \pm \underline{\underline{L C}}+\underline{V}_{1} \pm{ }_{j 1}^{\underline{\underline{L}}}=1 / 0 \mathrm{c} \\
& \boldsymbol{V}_{1}(j 1+1)+j 1+1 / 0 \mathrm{c}=j 1 \\
& \boldsymbol{V}_{1}=\frac{-1}{1+j 1} \\
& \begin{array}{llll}
\begin{array}{l}
1+j 1 \\
\boldsymbol{V}+\boldsymbol{\chi}
\end{array} & \underline{1}_{j}^{1}+1 & \underline{j} & \underline{1}
\end{array}
\end{aligned}
$$

Option (A) is correct.
We obtain Thevenin equivalent of circuit B.

Thevenin Impedance :

$$
Z_{T h}=R
$$

Thevenin Voltage :

$$
V_{T h}=3 / 0 \mathrm{c} \mathrm{~V}
$$

Now, circuit becomes as

Current in the circuit,

$$
I_{1}=\frac{10-3}{2+R}
$$

Power transfer from circuit A to B
or

$$
\begin{aligned}
P & =\left(I_{1}^{2}\right)^{2} R+3 I_{1} \\
& =: \frac{10-3}{2+R} \mathrm{D}^{2} R+3 \cdot \frac{10-3}{2+R} \mathrm{D} \\
P & =\frac{42+70 R}{(2+R)^{2}} \\
\frac{d P}{d R} & =\frac{(2+R)^{2} 70-(42+70 R) 2(2+R)}{(2+R)^{4}}{ }^{2}= \\
(2+R) & {[(2+R) 70-(42+70 R) 2]=0 \quad \& \quad R=0.8 \mathrm{~W} }
\end{aligned}
$$

Option (A) is correct.
In the given circuit

$$
V_{A}-V_{B}=6 \mathrm{~V}
$$

So current in the branch will be

$$
I_{A B}=\frac{6}{2}=3 \mathrm{~A}
$$

We can see, that the circuit is a one port circuit looking from terminal $B D$ as shown below

For a one port network current entering one terminal, equals the current leaving the second terminal. Thus the outgoing current from A to B will be equal to the incoming current from D to C as shown
i.e.

$$
I_{D C}=I_{A B}=3 \mathrm{~A}
$$

The total current in the resistor 1 W will be

$$
\begin{aligned}
& \left.\begin{array}{rl}
I_{1} & =2+I_{D C} \\
& =2+3=5 \mathrm{~A} \\
\text { So, } \quad V_{C D} & =1 \#\left(-I_{1}\right)=-5 \mathrm{~V}
\end{array} \quad \quad \text { (By writing KCL at node } D\right)
\end{aligned}
$$

Option (C) is correct.
When 10 V is connected at port A the network is

Now, we obtain Thevenin equivalent for the circuit seen at load terminal, let Thevenin voltage is $V_{T h, 10} \mathrm{v}$ with 10 V applied at port A and Thevenin resistance is $R_{T h}$.

$$
I_{L}=\frac{V_{T h, 10 \mathrm{v}}}{R_{T h}+R_{L}}
$$

For $R_{L}=1 \mathrm{~W}, I_{L}=3 \mathrm{~A}$

$$
\begin{equation*}
3=\frac{V_{T h, 10 \mathrm{v}}}{R_{T h}+1} \tag{i}
\end{equation*}
$$

For $R_{L}=2.5 \mathrm{~W}, I_{L}=2 \mathrm{~A}$

$$
\begin{equation*}
2=\frac{V_{T h, 10 \mathrm{v}}}{R_{T h}+2.5} \tag{ii}
\end{equation*}
$$

Dividing above two

$$
\begin{aligned}
\frac{3}{2} & =\frac{R_{T h}+2.5}{R_{T h}+1} \\
3 R_{T h}+3 & =2 R_{T h}+5 \\
R_{T h} & =2 \mathrm{~W}
\end{aligned}
$$

Substituting $R_{T h}$ into equation (i)

$$
V_{T h, 10 \mathrm{v}}=3(2+1)=9 \mathrm{~V}
$$

Note that it is a non reciprocal two port network. Thevenin voltage seen at port B depends on the voltage connected at port A. Therefore we took subscript $V_{T h, 10} \mathrm{v}$. This is Thevenin voltage only when 10 V source is connected at input port A. If the voltage connected to port A is different, then Thevenin voltage will be different. However, Thevenin's resistance remains same.
Now, the circuit is as shown below :

For $R_{L}=7 \mathrm{~W}, \quad I_{L}=\frac{V_{T h, 10 \mathrm{v}}}{2+R_{L}}=\frac{9}{2+7}=1 \mathrm{~A}$
Option (B) is correct.
Now, when 6 V connected at port A let Thevenin voltage seen at port B is $V_{T h, 6} \mathrm{~V}$
. Here $R_{L}=1 \mathrm{~W}$ and $I_{L}=\frac{7}{3} \mathrm{~A}$

$$
V_{T h, 6 \mathrm{v}}=R_{T h} \# \frac{7}{3}+1 \# \frac{7}{3}=2 \# \frac{7}{3}+\frac{7}{3}=7 \mathrm{~V}
$$

This is a linear network, so $V_{T h}$ at port B can be written as

$$
V_{T h}=V_{1} a+b
$$

where V_{1} is the input applied at port A
We have $V_{1}=10 \mathrm{~V}, V_{T h, 10 \mathrm{v}}=9 \mathrm{~V}$

- $\quad 9=10 a+b$

When $V_{1}=6 \mathrm{~V}, V_{T h, 6 \mathrm{v}}=9 \mathrm{~V}$
-

$$
\begin{equation*}
7=6 a+b \tag{ii}
\end{equation*}
$$

Solving (i) and (ii)

$$
a=0.5, b=4
$$

Thus, with any voltage V_{1} applied at port A, Thevenin voltage or open circuit voltage at port B will be

So,

$$
V_{T h, V}=0.5 V_{1}+4
$$

For

$$
\begin{gathered}
V_{1}=8 \mathrm{~V} \\
V_{T h, 8 \mathrm{~V}}=0.5 \# 8+4=8=V_{o c}
\end{gathered}
$$

(open circuit voltage)

Option (A) is correct.
The given circuit is shown below

For parallel combination of R and C equivalent impedance is

$$
Z_{\mathrm{p}}=\frac{R \$ \frac{1}{j W C}}{R+\frac{1}{j \mathrm{WC}}}=\frac{R}{1+\frac{\mathrm{W} R C}{}}
$$

Transfer function can be written as

$$
\begin{array}{rlr}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{Z_{\mathrm{p}}}{Z_{\mathrm{s}}+Z_{\mathrm{p}}}=\frac{\frac{R}{1+j \mathrm{~W} R C}}{R+\frac{1}{j \mathrm{WC}}+\frac{R}{1+j \mathrm{WRC}}} \\
& =\frac{j \mathrm{~W} R C}{j \mathrm{~W} R C)^{2}} j \mathrm{~W} R C+(1+ & \\
& =\frac{j}{(1+j)^{2}} & \text { Here } \mathrm{W}=\frac{1}{R C}
\end{array}
$$

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{j}{(1+j)^{2}+j}=\frac{1}{3} \\
v_{\text {out }} & \left.=\mathrm{b} \frac{V_{p}}{3} \right\rvert\, \cos (t / R C)
\end{aligned}
$$

Thus

Thus
$R_{1}=\frac{R_{a} R_{b}}{R_{a}+R+R_{c}}=\frac{6.6}{6+6+6}=2 \mathrm{~W}$
Here
$R_{1}=R_{2}=R_{3}=2 \mathrm{~W}$
Replacing in circuit we have the circuit shown below :

Now the total impedance of circuit is

$$
\begin{array}{ll}
Z=\frac{(2+j 4)(2-j 4)}{(2+j 4)(2-j 4)}+2=7 \mathrm{~W} \\
\text { Current } \quad I & =\frac{14+0 \mathrm{C}}{7}=2+0 \mathrm{c}
\end{array}
$$

Option (D) is correct.
From given admittance matrix we get

$$
\begin{align*}
& I_{1}=0.1 V_{1}-0.01 V_{2} \text { and } \tag{1}\\
& I_{2}=0.01 V_{1}+0.1 V_{2} \tag{2}
\end{align*}
$$

Now, applying KVL in outer loop;
or

$$
\begin{align*}
V_{2} & =-100 I_{2} \\
I_{2} & =-0.01 V_{2} \tag{3}
\end{align*}
$$

From eq (2) and eq (3) we have

$$
\begin{gathered}
-0.01 V_{2}=0.01 V_{1}+0.1 V_{2} \\
-0.11 V_{2}=0.01 V_{1} \\
\frac{V_{2}}{V_{1}}=\frac{-1}{11}
\end{gathered}
$$

Option (A) is correct.
Here we take the current flow direction as positive.
At $t=0^{-}$voltage across capacitor is

$$
\begin{aligned}
& V_{C}\left(0^{-}\right)=-\frac{Q}{C}=-\frac{2.5 \# 10^{-3}}{50 \# 10^{-6}}=-50 \mathrm{~V} \\
& V_{C}\left(0^{+}\right)=-50 \mathrm{~V}
\end{aligned}
$$

Thus
In steady state capacitor behave as open circuit thus

Now,

$$
V(3)=100 \mathrm{~V}
$$

$$
\begin{aligned}
V_{C}(t) & =V_{C}(\mathbf{3})+\left(V_{C}\left(0^{+}\right)-V_{C}(\mathbf{3})\right) e^{-t / R C} \\
& =100+(-50-100) e^{\frac{-t}{10 \# 50 \# 10^{-6}}} \\
& =100-150 e^{-\left(2 \# 10^{3} t\right)}
\end{aligned}
$$

Now

$$
\begin{aligned}
i_{c}(t) & =C \frac{d V}{d t} \\
& =50 \nRightarrow 10^{-6} \# 150 \not \# 2 \# 10^{3} e^{-2 \# 10^{3} t} \mathrm{~A} \\
& =15 e^{-2 \# 10^{3} t} \\
i_{c}(t) & =15 \exp \left(-2 \nexists 10^{3} t\right) \mathrm{A}
\end{aligned}
$$

Option (A) is correct.
Given circuit is as shown below

Writing node equation at input port

$$
\begin{equation*}
I_{1}=\frac{V_{1}}{0.5}+\frac{V_{1}-V_{2}}{0.5}=4 V_{1}-2 V_{2} \tag{1}
\end{equation*}
$$

Writing node equation at output port

$$
I_{2}=\frac{V_{2}}{0.5}+\frac{V_{2}-V_{1}}{0.5}=-2 V_{1}+4 V_{2}
$$

From (1) and (2), we have admittance matrix

$$
Y \Rightarrow \begin{array}{cc}
4 & -2 \\
-2 & 4^{H}
\end{array}
$$

Option (D) is correct.
A parallel $R L C$ circuit is shown below :

Input impedance

$$
Z_{\text {in }}=\frac{1}{\frac{1}{R}+\frac{1}{j w L}^{j^{w}}+j w C}
$$

At resonance

$$
\frac{1}{w L}=w C
$$

So,

$$
Z_{\text {in }}=\frac{1}{1 / R}=R
$$

(maximum at resonance)
Thus (D) is not true.

Furthermore bandwidth is w_{B} i.e $\mathrm{W}_{B} \backslash \frac{1}{R}$ and is independent of L, Hence statements A, B, C, are true.

Option (A) is correct.
Let the current $\quad i(t)=A+B e^{-t /} T \quad T^{\text {' }}$ Time constant
When the switch S is open for a long time before $t<0$, the circuit is

At $t=0$, inductor current does not change simultaneously, So the circuit is

Current is resistor (AB)

$$
i(0)=\frac{0.75}{2}=0.375 \mathrm{~A}
$$

Similarly for steady state the circuit is as shown below

$$
\begin{array}{ll}
& \left.\begin{array}{rl}
i(3) & =\frac{15}{3}=0.5 \mathrm{~A} \\
& T
\end{array}\right) \frac{L}{R_{e q}}=\frac{15 \# 10^{-3}}{10+(10 \| 10)}=10^{-3} \mathrm{sec} \\
& i(t)=A+B e^{-\frac{t}{1 \# 10^{-3}}}=A+B e^{-100 t} \\
\text { Now } & i(0)=A+B=0.375 \\
\text { and } & i(3)=A=0.5 \\
\text { So, } & B
\end{array}
$$

Option (A) is correct.
Circuit is redrawn as shown below

Where,

$$
\begin{aligned}
Z_{1} & =j w L=j \# 10^{3} \# 20 \# 10^{-3}=20 j \\
Z_{2} & =R \| X_{C} \\
X_{C} & ={ }_{j}{ }_{w C}=\frac{1}{j \# 10 \# 50 \# 10}=-20 j
\end{aligned}
$$

$$
Z_{2}=\frac{1(-20 j)}{1-20 j}
$$

$$
R=1 \mathrm{~W}
$$

Voltage across Z_{2}

$$
\begin{aligned}
V_{Z_{2}} & =\frac{Z_{2}}{Z_{1}+Z_{2}}=20 \angle 0 \\
& =\frac{-20 j}{1-20 j \frac{\mathrm{~m}}{1}}=20 \\
& =\mathrm{c} 20 j-\frac{20 j}{1-20 j^{\mathrm{m}}} \frac{(-20 j)}{20 j+400-20 j}=20=-
\end{aligned}
$$

Current in resistor R is

$$
I=\frac{V_{2}}{R}=-\frac{j}{1}=-j \mathrm{~A}
$$

Sol. 27 Option (A) is correct.
The circuit can be redrawn as

Applying nodal analysis

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{V_{A}-10}{2}+1+\frac{V_{A}}{2}-0 & =0 \\
2 V_{A}-10+2 & =0=V_{4}=4 \mathrm{~V} \\
\text { Current, } & I_{1}
\end{aligned}=\frac{10-4}{2}=3 \mathrm{~A}
\end{aligned}
$$

Current from voltage source is

$$
I_{2}=I_{1}-3=0
$$

Since current through voltage source is zero, therefore power delivered is zero.
Option (A) is correct
Circuit is as shown below

Since 60 V source is absorbing power. So, in 60 V source current flows from + to - ve direction

So,

$$
\begin{aligned}
I+I_{1} & =12 \\
I & =12-I_{1}
\end{aligned}
$$

I is always less then 12 A So, only option (A) satisfies this conditions.
Sol. 29 Option (C) is correct.
For given network we have

$$
\begin{aligned}
{ }_{0} V & =\frac{\left(R_{L} \| X_{C}\right) V_{i}}{R+\left(R_{L} \| X_{C}\right)} \\
\frac{V_{0}(s)}{V_{i}(s)} & =\frac{\frac{R_{L}}{1+s R_{L} C}}{R+\frac{R_{L}}{1+s \bar{R}_{L} C}}=\frac{R_{L}}{R+R R_{L} s C+R_{L}} \\
& =\frac{R_{L}}{R+R R_{L} s C+R_{L}}=\frac{1}{1+\frac{R}{R_{L}}+R s C}
\end{aligned}
$$

But we have been given

$$
T . F .=\frac{V_{0}(s)}{V_{i}(s)}=\frac{1}{2+s C R}
$$

Comparing, we get

$$
1+\frac{R}{R_{L}}=2 \quad \& R_{L}=R
$$

Option (B) is correct.
From given circuit the load current is

$$
I_{L}=\frac{V}{Z_{s}+Z_{L}}=\frac{20+0 c}{(1+2 j)+(7+4 j)}=\frac{20+0 c}{8+6 j}
$$

$$
=\frac{1}{5}(8-6 j)=\frac{20+0 \mathrm{C}}{10+\boldsymbol{f}}=2+-\boldsymbol{f} \quad \text { where } f=\tan ^{-1} \underline{3}
$$

The voltage across load is

$$
V_{L}=I_{L} Z_{L}
$$

The reactive power consumed by load is

$$
\begin{aligned}
P_{r} & =V I_{L}^{*}=I{\underset{L}{L}}_{Z}^{I^{*}}=Z I_{L}^{2} \\
& =(7 \# 4 j)\left|\frac{20+0 c^{2}}{8+6 j}\right|^{2}=(7+4 j)=28+16 j
\end{aligned}
$$

Thus average power is 28 and reactive power is 16 .
Option (B) is correct.
At $t=0^{-}$, the circuit is as shown in fig below :

Thus

$$
V\left(0^{-}\right)=100 \mathrm{~V}
$$

$$
V\left(0^{+}\right)=100 \mathrm{~V}
$$

At $t=0^{+}$, the circuit is as shown below

At steady state i.e. at $t=3$ is $I(3)=0$
Now

$$
\begin{aligned}
i(t) & =I\left(0^{+}\right) e^{-\frac{1}{-c_{\text {cq }}}} u(t) \\
C_{e q} & =\frac{(0.5 m+0.3 m) 0.2 m}{0.5 m+0.3 m+0.2 m}=0.16 \mathrm{mF} \\
\frac{1}{R C_{e q}} & =\frac{1}{5 \# 10^{3} \# 0.16 \# 10^{-6}}=1250 \\
i(t) & =20 e^{-1250 t} u(t) \mathrm{mA}
\end{aligned}
$$

Option (C) is correct.
For $P_{\text {max }}$ the load resistance R_{L} must be equal to thevenin resistance $R_{e q}$ i.e. R_{L} $=R_{e q}$. The open circuit and short circuit is as shown below

The open circuit voltage is

From fig

$$
\begin{aligned}
& V_{o c}=100 \mathrm{~V} \\
& I_{1}=\frac{100}{8}=12.5 \mathrm{~A} \\
& V_{x}=-4 \# 12.5=-50 \mathrm{~V} \\
& I_{2}=\frac{100+V_{x}}{4}=\frac{100-50}{4}=12.5 \mathrm{~A} \\
& I_{s c}=I_{1}+I_{2}=25 \mathrm{~A} \\
& R_{t h}=\frac{V_{o c}}{I_{s c}}=\frac{100}{25}=4 \mathrm{~W}
\end{aligned}
$$

Thus for maximum power transfer $R_{L} \quad=R_{e q}=4 \mathrm{~W}$
Option (A) is correct.
Steady state all transient effect die out and inductor act as short circuits and forced response acts only. It doesn't depend on initial current state. From the given time domain behavior we get that circuit has only R and L in series with V_{0}. Thus at steady state

$$
i(t) " i(3)=\frac{V_{0}}{R}
$$

Option (C) is correct.
The given graph is

There can be four possible tree of this graph which are as follows:

There can be 6 different possible cut-set.

Option (B) is correct.
Initially $i\left(0^{-}\right)=0$ therefore due to inductor $i\left(0^{+}\right)=0$. Thus all current I_{s} will flow in resistor R and voltage across resistor will be $I_{s} R_{s}$. The voltage across inductor will be equal to voltage across R_{s} as no current flow through R.

Thus

$$
v_{L}\left(0^{+}\right)=I_{s} R_{s}
$$

but

$$
v_{L}\left(0^{+}\right)=L \frac{d i\left(0^{+}\right)}{d t}
$$

$$
\frac{d i\left(0^{+}\right)}{d t}=\frac{v_{L}\left(0^{+}\right)}{L}=-\frac{I_{\underline{s}} R_{\underline{s}}}{L}
$$

Option (A) is correct.
Killing all current source and voltage sources we have,

$$
\begin{aligned}
Z_{t h} & =(1+s)\left(\frac{1}{s}+1\right) \\
& =\frac{(1+s)\left(\frac{1}{s}+1\right)}{(1+s)+\left(\frac{1}{s}+1\right)}=\frac{\left[\frac{1}{s}+1+1+s\right]}{s+\frac{1}{s}+1+1}
\end{aligned}
$$

or

$$
Z_{t h}=1
$$

Alternative :
Here at DC source capacitor act as open circuit and inductor act as short circuit. Thus we can directly calculate thevenin Impedance as 1 W

Option (D) is correct.

$$
Z(s)=R\left\|\frac{1}{s C} s\right\|^{=} \frac{\frac{s}{C}}{s^{2}+\frac{s}{R C}+\frac{1}{L C}}
$$

We have been given

$$
Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}
$$

Comparing with given we get

$$
\begin{aligned}
& \frac{1}{C}=0.2 \text { or } C=5 \mathrm{~F} \\
& \frac{1}{R C}=0.1 \text { or } R=2 \mathrm{~W} \\
& \frac{1}{L C}=2 \text { or } L=0.1 \mathrm{H}
\end{aligned}
$$

Option (C) is correct.
Voltage across capacitor is

$$
V_{c}=\frac{1}{\#^{\prime}}{ }_{0}^{t} i d t
$$

Here $C=1 \mathrm{~F}$ and $i=1 \mathrm{~A}$. Therefore

$$
V_{c}=\underset{0}{\#} d t
$$

For $0<t<T$, capacitor will be charged from 0 V

$$
V_{c}=\#_{0}^{t} d t=t
$$

At $t=T, V_{c}=T$ Volts
For $T<t<2 T$, capacitor will be discharged from T volts as

$$
V_{c}=T-\#_{T}^{t} d t=2 T-t
$$

At $t=2 T, V_{c}=0$ volts
For $2 T<t<3 T$, capacitor will be charged from 0 V

$$
V_{c}=\#_{2 T}^{t} d t=t-2 T
$$

At $t=3 T, V_{c}=T$ Volts
For $3 T<t<4 T$, capacitor will be discharged from T Volts

$$
V_{c}=T-\#_{3 T}^{\#} d t=4 T-t
$$

At $t=4 T, V_{c}=0$ Volts
For $4 T<t<5 T$, capacitor will be charged from 0 V

$$
V_{c}=\#_{4 T}^{t} d t=t-4 T
$$

At $t=5 T, V_{c}=T$ Volts
Thus the output waveform is

Only option C satisfy this waveform.

Option (D) is correct.
Writing in transform domain we have

$$
\underline{V}_{c}(s)=\frac{\frac{1}{s}}{V_{s}(s)}=\frac{1}{\wedge_{s}^{\frac{1}{s}}+s+1}=\frac{1}{\left(s^{1}+s+1\right)}
$$

Since $V_{s}(t)=d(t)^{\prime \prime} V_{s}(s)=1$ and

$$
\begin{aligned}
& V_{c}(s)=\frac{1}{\left(s^{2}+s+1\right)} \\
& V_{c}(s)=\frac{2}{\sqrt{3}\left(s+\frac{\frac{1}{2}}{2}\right)^{2}+\frac{3}{4}} G
\end{aligned}
$$

or
Taking inverse Laplace transform we have

$$
V_{t}=\frac{2}{\sqrt{3}} e^{-\frac{1}{2}} \sin \mathrm{c} \frac{3}{2} t \mathrm{~m}
$$

Option (B) is correct.
Let voltage across resistor be v_{R}

$$
\frac{V_{R}(s)}{V_{S}(s)}=\frac{1}{\left(\frac{1}{s}+s+1\right)}=\frac{s}{\left(s^{2}+s+1\right)}
$$

Since $v_{s}=d(t)$ " $V_{s}(s)=1$ we get
or

$$
\begin{aligned}
V_{R}(s) & =\frac{s}{\left(s^{2}+s+1\right)}=\frac{s}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
& =\frac{\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+-\frac{3}{4}}-\frac{\frac{1}{2^{2}}}{\left(s+\frac{1^{2}}{2}\right)^{2}+\frac{3}{4}} \\
v_{R}(t) & =e^{-} \frac{1}{2} \cos \frac{3}{2} t-\frac{1}{2} \# \frac{2}{\sqrt{3}} e^{-\frac{1}{2} \sin \frac{3}{2} t} \\
& =e^{-\frac{t}{2}}=\cos \frac{\not p}{2} t-\frac{1}{\sqrt{3}} \sin \frac{3}{2} G
\end{aligned}
$$

Option (C) is correct.
From the problem statement we have

$$
\begin{aligned}
& z_{11}=\left.\frac{v_{1}}{i_{1}}\right|_{\bar{亏}_{\overline{2}} 0}=\frac{6}{4}=1.5 \mathrm{~W} \\
& z_{12}=\frac{v_{1}}{\left.i_{2}\right|_{\bar{T}}}=\frac{4.5}{1}=4.5 \mathrm{~W} \\
& z_{21}=\left.\frac{v_{2}}{i_{1}}\right|_{i_{2}=0}=\frac{6}{4}=1.5 \mathrm{~W} \\
& z_{22}=\left.\frac{v_{2}}{i_{2}}\right|_{i_{2}=0}=\frac{1.5}{1}=1.5 \mathrm{~W}
\end{aligned}
$$

Thus z-parameter matrix is

$$
\begin{array}{cc}
z_{11} & z_{12} \\
=z_{21} & z_{22}
\end{array} G=\begin{aligned}
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned} .5
$$

Option (A) is correct.
From the problem statement we have

$$
\begin{aligned}
& h_{12}=\left.\frac{v_{1}}{v_{2 i}}\right|_{\bar{~} 0}=\frac{4.5}{1.5}=3 \\
& h_{22}=\left.\frac{i_{2-}}{v_{2 i}}\right|_{\mid=0}=\frac{1}{1.5}=0.67
\end{aligned}
$$

From z matrix, we have

If $v_{2}=0$ then \quad\begin{tabular}{l}
$v_{1}=z_{11} i_{1}+z_{12} i_{2}$

$v_{2}=z_{21} i_{1}+z_{22} i_{2}$

or \quad| i_{2} |
| :--- |
| i_{1} |$\frac{-z_{21}}{z_{22}}=\frac{-1.5}{1.5}=-1=h_{21}$

$i_{2}=-i_{1}$
\end{tabular}.

Putting in equation for v_{1}, we get

$$
\begin{aligned}
v_{1} & =\left(z_{11}-z_{12}\right) i_{1} \\
\underline{v}_{1} & \\
i_{1 \|_{\overline{2} 0}} & =h_{11}=z_{11}-z_{12}=1.5-4.5=-3
\end{aligned}
$$

Hence h-parameter will be

$$
\begin{aligned}
& h_{11} \\
&=h_{12} \\
&=h_{21} h_{22}
\end{aligned}{ }^{-3}=\begin{array}{cc}
-3 & 3 \\
-1 & 0.67
\end{array}
$$

Option (D) is correct.
According to maximum Power Transform Theorem

$$
Z_{L}=Z_{s}^{*}=\left(R_{s}-j X\right)
$$

Option (C) is correct.
At $w^{\prime \prime}$ 3, capacitor acts as short circuited and circuit acts as shown in fig below

Here we get $\frac{V_{0}}{V_{i}}=0$
At $w^{\prime \prime} 0$, capacitor acts as open circuited and circuit look like as shown in fig below

Here we get also $\frac{V_{0}}{V_{i}}=0$
So frequency response of the circuit is as shown in fig and circuit is a Band pass filter.

Option (D) is correct.
We know that bandwidth of series $R L C$ circuit is \underline{R}. Therefore
Bandwidth of filter 1 is $B_{1} \quad=\frac{R}{L}$
Bandwidth of filter 2 is $B_{2}=\frac{L_{R}}{L_{2}}=\frac{R}{L_{1} / 4}=\frac{4 R}{L_{1}}$
Dividing above equation $\frac{B_{1}}{B_{2}}=\frac{L_{2}}{4}$

Option (D) is correct.
Here $V_{t h}$ is voltage across node also. Applying nodal analysis we get

$$
\frac{V_{t h}}{2}+\frac{V_{t h}}{1}+\frac{V_{t h}-2 i}{1}=2
$$

But from circuit

$$
i=\frac{V_{t h}}{1}=V_{t h}
$$

Therefore

$$
\frac{V_{t h}}{2}+\frac{V_{t h}}{1}+\frac{V_{t h}-2 V_{t h}}{1}=2
$$

or

$$
V_{t h}=4 \mathrm{volt}
$$

From the figure shown below it may be easily seen that the short circuit current at terminal $X Y$ is $i_{s c}=2$ A because $i=0$ due to short circuit of 1 W resistor and all current will pass through short circuit.

Therefore $\quad R_{t h}=\frac{V_{t h}}{i_{s c}}=\underline{4}=2 \mathrm{~W}$
Option (A) is correct.
The voltage across capacitor is
At $t=0^{+}$,

$$
V_{c}\left(0^{+}\right)=0
$$

At $t=3$,

$$
V_{C}(3)=5 \mathrm{~V}
$$

The equivalent resistance seen by capacitor as shown in fig is

$$
R_{e q}=20 \| 2=10 \mathrm{~kW}
$$

Time constant of the circuit is

$$
T=R_{e q} C=10 \mathrm{k} \# 4 \mathrm{~m}=0.04 \mathrm{~s}
$$

Using direct formula
or

$$
\begin{aligned}
V_{c}(t)= & V_{C}(\mathbf{3})-\left[V_{c}(\mathbf{3})-V_{c}(0)\right] e^{-t /} T \\
= & V_{C}(\mathbf{3})\left(1-e^{-t / T}\right)+V_{C}(0) e^{-t / T}=5\left(1-e^{-t / 0.04}\right) \\
& V_{c}(t)=5\left(1-e^{-25 t}\right)
\end{aligned}
$$

$$
\text { Now } \quad \begin{aligned}
I_{C}(t) & =C \frac{d V_{C}(t)}{d t} \\
& =4 \nRightarrow 10^{-6} \#\left(-5 \# 25 e^{-25 t}\right)=0.5 e^{-25 t} \mathrm{~mA}
\end{aligned}
$$

or
Now

$$
\begin{equation*}
V_{1}=A V_{2}-B I_{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}=C V_{2}-D I_{2} \tag{2}
\end{equation*}
$$

also

$$
\begin{equation*}
V_{2}=-I_{2} R_{L} \tag{3}
\end{equation*}
$$

From (1) and (2) we get
Thus

$$
\frac{V_{1}}{I_{1}}=\frac{A V_{2}}{C V_{2}}-\frac{B I_{2}}{-D I_{2}^{2}}
$$

Substituting value of V_{2} from (3) we get
Input Impedance

$$
Z_{i n}=\frac{-A \# I_{2} R_{L}-B I_{2}}{-C \# I_{2} R_{L}-D I_{2}}
$$

$$
Z_{i n}=\frac{A R_{\underline{L}}+B}{C R_{L}+D}
$$

Option (B) is correct.
The circuit is as shown below.

At input port

$$
\begin{aligned}
& V_{1}=r_{e} I_{1} \\
& V_{2}=r_{0}\left(I_{2}-b I_{1}\right)=-r_{0} b I_{1}+r_{0} I_{2}
\end{aligned}
$$

At output port
Comparing standard equation

$$
\begin{aligned}
V_{1} & =z_{11} I_{1}+z_{12} I_{2} \\
V_{2} & =z_{21} I_{1}+z_{22} I_{2} \\
z_{12} & =0 \text { and } z_{21}=-r_{0} b
\end{aligned}
$$

Option (B) is correct.
For series RC network input impedance is

$$
Z_{i n s}=\frac{1}{s C}+R=\frac{1+s R C}{s C}
$$

Thus pole is at origin and zero is at $-\frac{1}{R C}$
For parallel $R C$ network input impedance is

$$
Z_{\text {in }}=\frac{\frac{1}{s C} R}{\frac{1}{s C}+R}=\frac{s C}{1+s R C}
$$

Thus pole is at $-\frac{1}{R C}$ and zero is at infinity.

Option (A) is correct.
We know

$$
v=\frac{L d i}{d t}
$$

Taking Laplace transform we get

$$
V(s)=s L I(s)-L i\left(0^{+}\right)
$$

As per given in question

$$
-L i\left(0^{+}\right)=-1 \mathrm{mV}
$$

$$
i\left(0^{+}\right)=\frac{1 \mathrm{mV}}{2 \mathrm{mH}}=0.5 \mathrm{~A}
$$

Option (B) is correct
At initial all voltage are zero. So output is also zero.

$$
\text { Thus } \quad v_{0}\left(0^{+}\right)=0
$$

At steady state capacitor act as open circuit.

Thus, $\quad v_{0}(3)=\frac{4}{5} \# v_{i}=\frac{4}{5} \# 10=8$
The equivalent resistance and capacitance can be calculate after killing all source

$$
\begin{aligned}
R_{e q} & =1 \| 4=0.8 \mathrm{~kW} \\
C_{e q} & =4 \| 1=5 \mathrm{~m} \mathrm{~F} \\
T & =R_{e q} C_{e q}=0.8 \mathrm{~kW} \# 5 \mathrm{mF}=4 \mathrm{~ms} \\
v_{0}(t) & =v_{0}(3)-\left[v_{0}(3)-v_{0}\left(0^{+}\right)\right] e^{-t / T} \\
& =8-(8-0) e^{-t / 0.004}
\end{aligned}
$$

$$
v_{0}(t)=8\left(1-e^{-t / 0.004}\right) \text { Volts }
$$

Option (A) is correct.
Here

$$
\begin{aligned}
& Z_{2}(s)=R_{n e g}+Z_{1}(s) \\
& Z_{2}(s)=R_{n e g}+\operatorname{Re} Z_{1}(s)+j \operatorname{Im} Z_{1}(s)
\end{aligned}
$$

For $Z_{2}(s)$ to be positive real, $\operatorname{Re} Z_{2}(s) \$ 0$
Thus $\quad R_{n e g}+\operatorname{Re} Z_{1}(s) \$ 0$
or

$$
\operatorname{Re} Z_{1}(s) \$-R_{n e g}
$$

But $R_{\text {neg }}$ is negative quantity and $-R_{\text {neg }}$ is positive quantity. Therefore
or

$$
\operatorname{Re} Z_{1}(s) \$\left|R_{\text {neg }}\right|
$$

$$
\left|R_{\text {neg }}\right| \# \operatorname{Re} Z_{1}(j w) \quad \text { For all } w .
$$

Option (C) is correct.
Transfer function is

$$
\frac{Y(s)}{U(s)}=\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}}=\frac{1}{s^{2} L C+s c R+1}=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$

Comparing with $s^{2}+2 x w_{n} s+w_{n}^{2}=0$ we have
Here $\quad 2 x w_{n}=\frac{R}{L}$,
and

$$
w_{n}=\frac{1}{L C}
$$

Thus $\quad x=\frac{R}{2 L} \sqrt{L C}=\frac{R}{2} \quad \frac{C}{L}$
For no oscillations, $x \$ 1$
Thus $\quad \frac{R}{2} \cdot \sqrt{\frac{C}{L}} \$ 1$
or

$$
R \$ 2 \quad \frac{士}{C}
$$

Option (B) is correct.
For given transformer
or

$$
\begin{aligned}
& \frac{I_{2}}{I_{1}}=\frac{V_{1}}{V_{2}}=\frac{n}{1} \\
& I_{1}=\frac{I_{2}}{n} \text { and } V_{1}=n V_{2}
\end{aligned}
$$

Comparing with standard equation

Thus

$$
\begin{aligned}
V_{1} & =A V_{2}+B I_{2} \\
I_{1} & =C V_{2}+D I_{2} \\
A B & =n 0 \\
{ }_{C}^{C D} \quad D^{\mathrm{G}} & ==_{0}^{0} \frac{\mathrm{G}}{n} \\
x & =\frac{1}{n}
\end{aligned}
$$

Option (B) is correct.
We have $L=1 H$ and $C=\frac{1}{400} \# 10^{-6}$
Resonant frequency

$$
f_{0}=\frac{1}{2 p / L C}==\frac{1}{2 p \sqrt{1 \# \frac{1}{400}}=\frac{10^{-6}}{}}
$$

$$
=\frac{10^{3} \# 20}{2 p}=\frac{10^{4}}{p} \mathrm{~Hz}
$$

Option (C) is correct.
Maximum power will be transferred when $R_{L}=R_{s}=100 \mathrm{~W}$ In
this case voltage across R_{L} is 5 V , therefore

$$
P_{\max }=\frac{V^{2}}{R^{-}}=\frac{5 \# 5}{100}=0.25 \mathrm{~W}
$$

Option (C) is correct.
For stability poles and zero interlace on real axis. In $R C$ series network the driving point impedance is

$$
Z_{i n s}=R+\frac{1}{C s}=\frac{1+s R C}{s C}
$$

Here pole is at origin and zero is at $s=-1 / R C$, therefore first critical
frequency is a pole and last critical frequency is a zero.
For $R C$ parallel network the driving point impedance is

$$
Z_{i n p}=\frac{R \frac{1}{C s}}{R+\frac{1}{C s}}=\frac{R}{1+s R C}
$$

Here pole is $s=-1 / R C$ and zero is at 3 , therefore first critical frequency is a pole and last critical frequency is a zero.

Option (A) is correct.
Applying KCL we get

$$
i_{1}(t)+5+0 c=10+60 c
$$

or $\quad i_{1}(t)=10+60 \mathrm{c}-5+0 \mathrm{c}=5+5.3 j-5$
or

$$
i_{1}(t)=5 \quad 3+90 c=\frac{10}{2} \quad 3+90 c
$$

Option (B) is correct.
If $L_{1}=j 5 \mathrm{~W}$ and $L_{3}=j 2 \mathrm{~W}$ the mutual induction is subtractive because current enters from dotted terminal of $j 2 \mathrm{~W}$ coil and exit from dotted terminal of $j 5 \mathrm{~W}$. If $L_{2}=j 2 \mathrm{~W}$ and $L_{3}=j 2 \mathrm{~W}$ the mutual induction is additive because current enters from dotted terminal of both coil.

Thus

$$
\begin{aligned}
Z & =L_{1}-M_{13}+L_{2}+M_{23}+L_{3}-M_{31}+M_{32} \\
& =j 5+j 10+j 2+j 10+j 2-j 10+j 10=j 9
\end{aligned}
$$

Option (B) is correct.
Open circuit at terminal ab is shown below

Applying KCL at node we get
or

$$
\begin{aligned}
\frac{V_{a b}}{5}+\frac{V_{a b}-10}{5} & =1 \\
V_{a b} & =7.5=V_{t h}
\end{aligned}
$$

Short circuit at terminal ab is shown below

Short circuit current from terminal ab is

Thus

$$
\begin{gathered}
I_{s c}=1+\frac{10}{5}=3 \mathrm{~A} \\
R_{t h}=\frac{V_{t h}}{I_{s c}}=\frac{7.5}{3}=2.5 \mathrm{~W}
\end{gathered}
$$

Here current source being in series with dependent voltage source make it ineffective.

Option (C) is correct.
Here $V_{a}=5 \mathrm{~V}$ because $R_{1}=R_{2}$ and total voltage drop is 10 V .
Now $\quad V_{b}=\frac{R_{3}}{R_{3}+R_{4}} \# 10=\frac{1.1}{2.1} \# 10=5.238 \mathrm{~V}$

$$
V=V_{a}-V_{b}=5-5.238=-0.238 \mathrm{~V}
$$

Sol. 65 Option (D) is correct.
For h parameters we have to write V_{1} and I_{2} in terms of I_{1} and V_{2}

$$
\begin{aligned}
& V_{1}=h_{11} I_{1}+h_{12} V_{2} \\
& I_{2}=h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

Applying KVL at input port

$$
V_{1}=10 I_{1}+V_{2}
$$

Applying KCL at output port
or

$$
\begin{aligned}
\frac{V_{2}}{20} & =I_{1}+I_{2} \\
I_{2} & =-I_{1}+\frac{V_{2}}{20}
\end{aligned}
$$

Thus from above equation we get

$$
\begin{array}{cc}
h_{11} & h_{12} \\
=h_{12} & h_{22}
\end{array}
$$

Option (B) is correct.
Time constant

$$
R C=0.1 \# 10^{-6} \# 10^{3}=10^{-4} \mathrm{sec}
$$

Since time constant $R C$ is very small, so steady state will be reached in 2 sec.
At $t=2 \mathrm{sec}$ the circuit is as shown in fig.

$$
\begin{aligned}
& V_{c}=3 \mathrm{~V} \\
& V_{2}=-V_{c}=-3 \mathrm{~V}
\end{aligned}
$$

Sol. $67 \quad$ Option (B) is correct.
For a tree there must not be any loop. So a, c, and d don't have any loop. Only b has loop.

Option (D) is correct.
The sign of M is as per sign of L If current enters or exit the dotted terminals of both coil. The sign of M is opposite of L If current enters in dotted terminal of a coil and exit from the dotted terminal of other coil.

Thus

$$
L_{e q}=L_{1}+L_{2}-2 M
$$

Option (A) is correct.
Here $w=2$ and $V=1+0 \mathrm{c}$

$$
\begin{aligned}
Y & =\frac{1}{R}+j w C+\frac{1}{j w L} \\
& =3+j 2 \# 3+\frac{1}{j 2 \#_{-1}^{1}}=3+j 4 \\
& =5+\tan ^{-1} \frac{4}{3}=5+53.11 \mathrm{c} \\
I & =V * Y=(1+0 \mathrm{c})(5+53.1 \mathrm{c})=5+53.1 \mathrm{c}
\end{aligned}
$$

Thus

$$
i(t)=5 \sin (2 t+53.1 \mathrm{c})
$$

Option (A) is correct.

$$
v_{i}(t)=\sqrt{2} \sin 10^{3} t
$$

Here $w=10^{3}$ rad and $V_{i}=\sqrt{2}+0 \mathrm{c}$

Now

$$
\begin{aligned}
V_{0} & =\frac{j w C}{R+\frac{1}{j w}} \cdot V_{t}=\frac{1}{1+j w C R} V_{i} \\
& =\frac{1}{1+j \# 10^{3} \# 10^{-3}} 2^{2}+0 \mathrm{c} \\
& =1-45 \mathrm{c} \\
v_{0}(t) & =\sin \left(10^{3} t-45 \mathrm{c}\right)
\end{aligned}
$$

\qquad

Option (C) is correct.
Input voltage

$$
\begin{aligned}
& v_{i}(t)=u(t) \\
& \quad V_{i}(s)=\frac{1}{s}
\end{aligned}
$$

Impedance
or

$$
\begin{aligned}
Z(s) & =s+2 \\
I(s) & =\frac{V_{i}(s)}{s+2}=\frac{1}{s(s+2)} \\
I(s) & =\frac{1}{2} ; \frac{1}{s}-\frac{1}{s+2} \mathrm{E}
\end{aligned}
$$

Taking inverse Laplace transform

$$
i(t)=\frac{1}{2}\left(1-e^{-2 t}\right) u(t)
$$

At $t=0, \quad i(t)=0$
At $t=\frac{1}{2}, \quad i(t)=0.31$
At $t=3, \quad i(t)=0.5$
Graph (C) satisfies all these conditions.

Option (D) is correct.
We know that
where

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{11} I_{1}+z_{22} I_{2} \\
& z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \\
& z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{1}=0}
\end{aligned}
$$

Consider the given lattice network, when $I_{2}=0$. There is two similar path in the circuit for the current I_{1}. So $I=\underline{1} I_{1}$

For z_{11} applying KVL at input port we get

$$
\begin{aligned}
& V_{1}=I\left(Z_{a}+Z_{b}\right) \\
& V_{1}=\frac{1}{2} I_{1}\left(Z_{a}+Z_{b}\right) \\
& z_{11}=\frac{1}{2}\left(Z_{a}+Z_{b}\right)
\end{aligned}
$$

Thus

For Z_{21} applying KVL at output port we get

$$
V_{2}=Z_{a} \frac{I_{1}}{2}-Z_{b} \frac{I_{1}}{2}
$$

Thus

$$
\begin{aligned}
& V_{2}=\frac{1}{2} I_{1}\left(Z_{a}-Z_{b}\right) \\
& z_{21}=\frac{1}{2}\left(Z_{a}-Z_{b}\right)
\end{aligned}
$$

Here $Z_{a}=2 j$ a日d十 $Z_{q_{2}}=2 W+j j-1$
Thus $\quad=z_{z_{21}} z_{22} \mathrm{G}==_{j-1} 1+j$
Sol. $73 \quad$ Option (B) is correct.
Applying KVL,

$$
v(t)=R i(t)+\frac{L d i(t)}{d t}+\frac{1}{C_{0}^{3}} i(t) d t
$$

Taking L.T. on both sides,

$$
\begin{aligned}
& V(s)=R I(s)+L s I(s)-L i\left(0^{+}\right)+\frac{I(s)}{s C}+\frac{v_{c}\left(0^{+}\right)}{s C} \\
& v(t)=u(t) \text { thus } V(s)=\frac{1}{s}
\end{aligned}
$$

Hence

$$
\underline{1}=I(s)+s I(s)-1+\frac{I(s)}{}-\underline{1}
$$

$$
\begin{aligned}
& \underline{2}+1=\frac{I(s)}{s} 6 s^{2}+s+1 @ \\
& s \\
& I(s)=\frac{s+2}{s^{2}+s+1}
\end{aligned}
$$

Option (B) is correct.
Characteristics equation is

$$
s^{2}+20 s+10^{6}=0
$$

Comparing with $s^{2}+2 x w_{n} s+w^{2}=0$ we have

$$
\begin{array}{rl}
w_{n} & =\overline{10^{6}}=10^{3} \\
2 x w & =20 \\
2 x & =\frac{20}{10^{3}}=0.02 \\
Q & =\frac{1}{2 x}=50 \\
2 x & 0.02
\end{array}
$$

Thus
Now

Option (D) is correct.

$$
\begin{aligned}
H(s) & =\frac{V_{0}(s)}{V_{i}(s)}=\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}}=\frac{1}{s^{2} L C+s C R+1} \\
& =\frac{1}{s^{2}\left(10^{-2} \# 10^{-4}\right)+s\left(10^{-4} \# 10^{4}\right)+1} \\
& =\frac{1}{10^{-6} s^{2}+s+1}=\frac{10^{6}}{s^{2}+10^{6} s+10^{6}}
\end{aligned}
$$

Option (D) is correct.
Impedance of series $R L C$ circuit at resonant frequency is minimum, not zero. Actually imaginary part is zero.

$$
Z=R+j w L-\frac{1}{w C} \mathbf{j}
$$

At resonance $w L-\frac{1}{w C}=0$ and $Z=R \quad$ that is purely resistive. Thus S_{1} is false
Now quality factor

$$
Q=R \sqrt{\frac{C}{L}}
$$

Since $G=\frac{1}{R}$,
$Q=\frac{1}{G} \cdot \sqrt{\frac{C}{L}}$
If G - then Q. provided C and L are constant. Thus S_{2} is also false.
Option (B) is correct.

$$
\begin{aligned}
\text { Number of loops } & =b-n+1 \\
& =\text { minimum number of equation } \\
\text { Number of branches } & =b=8 \\
\text { Number of nodes } & =n=5 \\
\text { Minimum number of equation } & =8-5+1=4
\end{aligned}
$$

Option (C) is correct.
For maximum power transfer

$$
\begin{array}{ll}
& Z_{L}=Z_{S}^{*}=R_{s}-j X_{s} \\
\text { Thus } & Z_{L}=1-1 j
\end{array}
$$

Option () is correct.
Data are missing in question as $L_{1} \& L_{2}$ are not given.
Option (A) is correct.
At $t=0^{-}$circuit is in steady state. So inductor act as short circuit and capacitor act as open circuit.

$$
\begin{array}{ll}
\text { At } t=0^{-}, & i_{1}\left(0^{-}\right)=i_{2}\left(0^{-}\right)=0 \\
& v_{c}\left(0^{-}\right)=V
\end{array}
$$

At $t=0^{+}$the circuit is as shown in fig. The voltage across capacitor and current in inductor can't be changed instantaneously. Thus

$$
\text { At } t=0^{+}, \quad i_{1}=i_{2}=-\frac{V}{2 R}
$$

Option (C) is correct.
When switch is in position 2, as shown in fig in question, applying KVL in loop (1),
or

$$
\begin{array}{r}
R I_{1}(s)+\frac{V}{s}+\frac{1}{s C} I_{1}(s)+s L\left[I_{1}(s)-I_{2}(s)\right]=0 \\
I_{1}(s) 8 R+\frac{1}{s c}+s L B-I_{2}(s) s L=\frac{-V}{s} \\
z_{11} I_{1}+z_{12} I_{2}=V_{1}
\end{array}
$$

Applying KVL in loop 2,

Now comparing with

$$
\begin{array}{r}
s L\left[I_{2}(s)-I_{1}(s)\right]+R I_{2}(s)+\frac{1}{c} I_{2}(s)=0 \\
s C \\
Z_{12} I_{1}+Z_{22} I_{2}=V_{2} \\
-s L I_{1}(s)+8 R+s L+\frac{1}{s c} B I_{2}(s)=0
\end{array}
$$

we get R

$$
\begin{aligned}
& \stackrel{\mathrm{R}}{\mathrm{~S} R+s L+\frac{1}{s C}} \quad-s L \quad \mathbb{W}_{I_{1}(s)} \quad-\underline{V} \\
& \begin{array}{lll}
\mathrm{S} \\
\mathrm{~S} & -s L & R+s L+\frac{1}{s C} \underset{X}{\underset{X}{W}} I_{2}(s)^{G} \Rightarrow \\
0
\end{array}
\end{aligned}
$$

Option (B) is correct.

$$
\begin{aligned}
\text { Zeros } & =-3 \\
\text { Pole }^{1} & =-1+j \\
\text { Pole }^{2} & =-1-j \\
Z(s) & =\frac{K(s+3)}{(s+1+j)(s+1-j)}=\frac{K(s+3)}{(s+1)^{2}-j^{2}(s+1)^{2}+1}
\end{aligned}
$$

From problem statement $Z(0){ }_{w=0}=3$
Thus $\frac{3 K}{2}=3$ and we get $K=2^{w}$

$$
Z(s)=\frac{2(s+3)}{s^{2}+2 s+2}
$$

Option (A) is correct.
Using 3- Y conversion

$$
\begin{aligned}
& R_{1}=\frac{2 \# 1}{2+1+1}=\frac{2}{4}=0.5 \\
& R_{2}=\frac{1 \# 1}{2+1+1}=\frac{1}{4}=0.25 \\
& R_{3}=\frac{2 \# 1}{2+1+1}=0.5
\end{aligned}
$$

Now the circuit is as shown in figure below.

Option (A) is correct
Applying KCL at for node 2,

$$
\frac{V_{2}}{5}+\frac{V_{2}-V_{1}}{5}=\frac{V_{1}}{5}
$$

or

$$
V_{2}=V_{1}=20 \mathrm{~V}
$$

Voltage across dependent current source is 20 thus power delivered by it is

$$
P V_{2} \# \frac{V_{1}}{5}=20 \# \frac{20}{5}=80 \mathrm{~W}
$$

It deliver power because current flows from its + ive terminals.

Option (C) is correct.
When switch was closed, in steady state, $i_{L}\left(0^{-}\right)=2.5 \mathrm{~A}$

At $t=0^{+}, i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=2.5$ A and all this current of will pass through 2 W resistor. Thus

$$
V_{x}=-2.5 \# 20=-50 \mathrm{~V}
$$

Option (A) is correct.
For maximum power delivered, R_{L} must be equal to $R_{t h}$ across same terminal.

Applying KCL at Node, we get

$$
0.5 I_{1}=\frac{V_{t h}}{20}+I_{1}
$$

or

$$
\begin{aligned}
V_{t h}+10 I_{1} & =0 \\
I_{1} & =\frac{V_{t h}-50}{40}
\end{aligned}
$$

but

Thus

$$
V_{t h}+\frac{V_{t h}-50}{4}=0
$$

or

$$
V_{t h}=10 \mathrm{~V}
$$

For $I_{s c}$ the circuit is shown in figure below.

but

$$
\begin{aligned}
I_{s c} & =0.5 I_{1}-I_{1}=-0.5 I_{1} \\
I_{1} & =-\frac{50}{40}=-1.25 \mathrm{~A} \\
I_{s c} & =-0.5 \#-12.5=0.625 \mathrm{~A}
\end{aligned}
$$

$$
R_{t h}=\frac{V_{t h}}{I_{s c}}=\frac{10}{0.625}=16 \mathrm{~W}
$$

Sol. 91 Option (D) is correct.
$I_{P}, V_{P}{ }^{"}$ Phase current and Phase voltage
$I_{L}, V_{L}{ }^{\prime \prime}$ Line current and line voltage
Now

$$
V_{P}={ }_{c}^{\frac{V_{L}}{3}} m \text { and } I_{P}=I_{L}
$$

So,

$$
\text { Power }=3 V_{P} I_{L} \cos q
$$

$$
1500=3_{C} \frac{V_{L}}{3} m\left(I_{L}\right) \cos q
$$

also

$$
\begin{aligned}
I_{L} & =\frac{V_{L}}{c} 3 Z_{L}^{m} \\
1500 & =3 \frac{V_{L}}{\mathrm{C}^{m} \mathrm{mc} \frac{V_{L}}{3 Z_{L}} \mathrm{~m}} \mathrm{mas} \\
Z_{L} & =\frac{(400)^{2}(.844)}{1500}=90 \mathrm{~W}
\end{aligned}
$$

As power factor is leading
So,

$$
\cos q=0.844{ }^{\prime \prime} q=32.44
$$

As phase current leads phase voltage

$$
Z_{L}=90+-q=90+-32.44 \mathrm{C}
$$

Sol. 92 Option (C) is correct.
Applying KCL, we get

$$
\underline{e}_{0}-\frac{12}{4}+\frac{e_{0}}{4}+\frac{e_{0}}{2+2}=0
$$

or

$$
e_{0}=4 \mathrm{~V}
$$

Option (A) is correct.
The star delta circuit is shown as below

Here
and

$$
Z_{A B}=Z_{B C}=Z_{C A}=\overline{3} Z
$$

$$
Z_{A}=\frac{Z_{A B} Z_{C A}}{Z_{A B}+Z_{B C}+Z_{C A}}
$$

$$
Z_{B}=\frac{Z_{A B} Z_{B C}}{Z_{A B}+Z_{B C}+Z_{C A}}
$$

$$
Z_{C}=\frac{Z_{B C} Z_{C A}}{Z_{A B}+Z_{B C}+Z_{C A}}
$$

Now

$$
Z_{A}=Z_{B}=Z_{C}=\frac{\sqrt{3} Z / 3 Z}{\sqrt{3} Z+\sqrt{3} Z+\sqrt{3} Z}=\frac{Z}{3}
$$

Option (C) is correct.

$$
\begin{aligned}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{aligned}=\begin{array}{cc}
y_{1}+y_{3} & -y_{3} \\
-y_{3} & y_{2}+y_{3} \\
G
\end{array}
$$

Sol. $95 \quad$ Option (D) is correct.
We apply source conversion the circuit as shown in fig below.

Now applying nodal analysis we have
or

$$
\begin{aligned}
\frac{e_{0}-80}{10+2}+\frac{e_{0}}{12}+\underline{e}_{0}-\frac{16}{6} & =0 \\
4 e_{0} & =112 \\
e_{0} & =\frac{112}{4}=28 \mathrm{~V}
\end{aligned}
$$

Sol. 96 Option (A) is correct

$$
\begin{aligned}
I_{2} & =\frac{E_{m}+0 C}{R_{2}+\frac{1}{j w C}}=E_{m}+0 c \frac{j w C}{1+j w C R_{2}} \\
+I_{2} & =\frac{+90 C}{+\tan ^{-1} w C R_{2}} \\
I_{2} & =\frac{E_{m} w C}{1+w^{2} C^{2} R^{2}}+\left(90 \mathrm{c}-\tan ^{-1} w C R_{2}\right) \\
I_{2} & =0 \\
I_{2} & =\frac{E_{m_{-}}}{R_{2}}
\end{aligned}
$$

At $w=0$
and at $w=3$,
Only figure given in option (A) satisfies both conditions.
Sol. $97 \quad$ Option (A) is correct.

$$
X_{s}=w L=10 \mathrm{~W}
$$

For maximum power transfer

$$
R_{L}=, \overline{R_{s}^{2}+X_{s}^{2}}=10^{2}+10^{2}=14.14 \mathrm{~W}
$$

Option (C) is correct.
Applying KVL in LHS loop
or

$$
\begin{aligned}
& E_{1}=2 I_{1}+4\left(I_{1}+I_{2}\right)-10 E_{1} \\
& F_{1}=\underline{6 I_{1}}+\underline{4 I_{2}}
\end{aligned}
$$

Thus $z_{11}=\frac{6}{11}$
Applying KVL in RHS loop

$$
\begin{aligned}
E_{2} & =4\left(I_{1}+I_{2}\right)-10 E_{1} \\
& =4\left(I_{1}+I_{2}\right)-10 \mathrm{c} \frac{6 I_{1}}{11}+\frac{4 I_{2}}{11} \mathrm{~m}=-\frac{16 I_{1}}{11}+\frac{4 I_{2}}{11}
\end{aligned}
$$

Thus $z_{21}=-\frac{16}{11}$

Option (D) is correct.
At $w=0$, circuit act as shown in figure below.

$$
\frac{V_{0}}{V_{s}}=\frac{R_{L}}{R_{L}+R_{s}}
$$

(finite value)
At $w=3$, circuit act as shown in figure below:

$$
\frac{V_{0}}{V_{s}}=\frac{R_{L}}{R_{L}+R_{s}}
$$

(finite value)
At resonant frequency $w=\sqrt{\frac{1}{L C}}$ circuit acts as shown in fig and $V_{0}=0$.

Thus it is a band reject filter.

Option (D) is correct
Applying KCL we get

Now

$$
\begin{aligned}
i_{L} & =e^{a t}+e^{b t} \\
V(t) & =v_{L}=L \frac{d i_{L}}{d t}=L \frac{d}{d t}\left[e^{a t}+e^{b t}\right]=a e^{a t}+b e^{b t}
\end{aligned}
$$

Option (A) is correct.
Going from 10 V to 0 V

$$
10+5+E+1=0
$$

or

$$
E=-16 \mathrm{~V}
$$

Option (C) is correct.
This is a reciprocal and linear network. So we can apply reciprocity theorem which states "Two loops A \& B of a network N and if an ideal voltage source E in loop A produces a current I in loop B, then interchanging positions an identical source in loop B produces the same current in loop A. Since network is linear, principle of homogeneity may be applied and when volt source is doubled, current also doubles.
Now applying reciprocity theorem

$$
\begin{aligned}
& i=2 \mathrm{~A} \text { for } 10 \mathrm{~V} \\
& V=10 \mathrm{~V}, i=2 \mathrm{~A} \\
& V=-20 \mathrm{~V}, i=-4 \mathrm{~A}
\end{aligned}
$$

Option (C) is correct.
Tree is the set of those branch which does not make any loop and connects all the nodes.
abfg is not a tree because it contains a loopl node (4) is not connected

Option (A) is correct.
For a 2-port network the parameter h_{21} is defined as

$$
h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V=0(\text { short circuit })}
$$

Applying node equation at node a we get

$$
\begin{aligned}
& \underline{V}_{a}-\frac{V_{1}}{R}+\frac{V_{a}-0}{R}+\frac{V_{a}-0}{R}=0 \\
& \begin{array}{r}
3 V_{a}=V_{1} \quad \& V_{a}=\frac{V_{1}}{3} \\
V_{1}-\underline{V_{1}}
\end{array} \\
& \underline{V-V} \quad V_{1}-\underline{V_{1}} \quad 2 V
\end{aligned}
$$

Now $I_{1}={ }^{1} R{ }^{a}=\frac{R^{3}=}{3 R^{1}}$
$I_{2}=\frac{0-V}{0-\underline{V_{1}}}{ }^{a}=\frac{-V}{R}=\frac{{ }^{3}}{3 R}$
Thus

$$
\left.\underline{I}_{z_{1}}\right|_{V_{2}=0}=h_{21}=\frac{-V_{1}}{2 V_{1}} \frac{/ 3 R}{/ 3 R}=\frac{-1}{2}
$$

Option (A) is correct
Applying node equation at node A

$$
\underline{V}_{t \underline{t}} \frac{-100(1+j 0)}{3}+\frac{V_{t h}-0}{4 j}=0
$$

or

$$
4 j V_{t h}-4 j 100+3 V_{t h}=0
$$

or

$$
\begin{aligned}
V_{t h}(3+4 j) & =4 j 100 \\
V_{t h} & =\frac{4 j 100}{3+4 j}
\end{aligned}
$$

By simplifying

$$
\begin{aligned}
V_{t h} & =\frac{4 j 100}{3+4 j} \# \frac{3-4 j}{3-4 j} \\
V_{\text {th }} & =16 j(3-j 4)
\end{aligned}
$$

Option (D) is correct.
Delta to star conversion

$$
\begin{aligned}
& R_{1}=\frac{R_{a b} R_{a c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{5 \# 30}{5+30+15}=\frac{150}{50}=3 \mathrm{~W} \\
& R_{2}=\frac{R_{a b} R_{b c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{5 \# 15}{5+30+15}=1.5 \mathrm{~W} \\
& R_{3}=\frac{R_{a c} R_{b c}}{R_{a b}+R_{a c}+\frac{15 \# 30}{R_{b c}}=9 \mathrm{~W}}=\frac{15+30+15}{5+3}
\end{aligned}
$$

Option (C) is correct.

$$
\text { No. of branches }=n+l-1=7+5-1=11
$$

Option (B) is correct.
In nodal method we sum up all the currents coming \& going at the node So it is based on KCL. Furthermore we use ohms law to determine current in individual branch. Thus it is also based on ohms law.

Option (A) is correct.
Superposition theorem is applicable to only linear circuits.
or
Option (B) is correct.
For reciprocal network $y_{12}=y_{21}$ but here $y_{12}=-\frac{1}{2} \geq y_{21}=\frac{1}{2}$. Thus circuit is non reciprocal. Furthermore only reciprocal circuit are passive circuit.

Option (C) is correct.
Taking b as reference node and applying KCL at a we get

$$
\begin{aligned}
& \frac{V_{a b}-1}{2}+\frac{V_{a b}}{2}=3 \\
& V_{a b}-1+V_{a b}=6
\end{aligned}
$$

or

$$
V_{a b}=\frac{6+1}{2}=3.5 \mathrm{~V}
$$

Option (A) is correct.
Option (B) is correct.
The given figure is shown below.

Applying KCL at node a we have

$$
I=i_{0}+i_{1}=7+5=12 \mathrm{~A}
$$

Applying KCL at node f

$$
\begin{array}{ll}
& I=-i_{4} \\
\text { so } & i_{4}=-12 \mathrm{amp}
\end{array}
$$

Option (A) is correct.

SO

$$
V=3-0=3 \text { volt }
$$

Option (D) is correct.
Can not determined V without knowing the elements in box.
Option (A) is correct.
The voltage V is the voltage across voltage source and that is 10 V .
Option (B) is correct.
Voltage across capacitor

$$
V_{C}(t)=V_{C}(3)+\left(V_{C}(0)-V_{C}(3)\right)^{\frac{-t}{e} R C}
$$

Here $V_{C}(3)=10 \mathrm{~V}$ and $\left(V_{C}(0)=6 \mathrm{~V}\right.$. Thus

$$
V_{C}(t)=10+(6-10)^{\frac{-t}{e}} R C=10-\frac{-t}{4 e} R C=10 \frac{-t}{-4} e^{\frac{-t}{}}
$$

Now

$$
\begin{aligned}
V_{R}(t) & =10-V_{C}(t) \\
& =10-10+4 e^{\frac{-t}{R C}}=4 e^{\frac{-t}{R C}}
\end{aligned}
$$

Energy absorbed by resistor

$$
E \underset{0}{\#} \frac{3 V_{R}^{2}(t)}{R}=\#_{0}^{3} \frac{16 e^{7^{t}}}{4}=\#_{0}^{3} 4 e^{\frac{-t}{4}}=16 \mathrm{~J}
$$

Option (B) is correct.
It is a balanced whetstone bridge

$$
\mathrm{b} \frac{R_{1}}{R}=\frac{R_{3}}{R_{4}} \mathrm{I}
$$

so equivalent circuit is

Option (B) is correct.
Current in $A_{2}, \quad I_{2}=3 \mathrm{amp}$
Inductor current can be defined as $I_{2}=-3 j$
Current in A_{3},

$$
\begin{aligned}
I_{3} & =4 \\
I_{1} & =I_{2}+I_{3}=4-3 j \\
|I| & =,(4)^{2}+(3)^{2}=5 \mathrm{amp}
\end{aligned}
$$

Option (C) is correct.
For a tree we have $(n-1)$ branches. Links are the branches which from a loop, when connect two nodes of tree.
so if total no. of branches $=b$

$$
\text { No. of links }=b-(n-1)=b-n+1
$$

Total no. of links in equal to total no. of independent loops.
Option (B) is correct.
In the steady state condition all capacitors behaves as open circuit \& Inductors behaves as short circuits as shown below :

Thus voltage across capacitor C_{1} is

$$
V_{G}=\frac{100}{10+}+4040=80 \mathrm{~V}
$$

Now the circuit faced by capacitor C_{2} and C_{3} can be drawn as below :

Voltage across capacitor C_{2} and C_{3} are

$$
V_{C}=80 \frac{C_{3}}{C_{2}+C_{3}}=80 \# \frac{3}{5}=48 \text { volt }
$$

$$
V_{C}=80 \frac{C_{2}}{C_{2}+C_{3}}=80 \#^{2}=32 \mathrm{volt}
$$

